top header
top gradation HOME top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line menu gray
black line 2
menu gray tab More About ATI
menu blue ATI — Who We Are
white line
menu blue Contact ATI Courses
white line
menu blue List Of ATI Courses
white line
menu blue Attendees Testimonials
white line
menu blue The ATI FAQ Sheet
white line
menu blue Suggestions/Wait List
white line
menu blue New Courses
white line
menu blue Become an ATI Instructor
menu gray tab site resources
menu blue Acoustics & Sonar
white line
menu blue Rockets & Space
white line
menu blue GPS Technology
white line
menu blue ATI Blog
white line
menu blue ATI Space News
white line
menu blue ATI Site Map
white line
menu blue ATI Staff Tutorials
white line
menu blue ATI Sampler Page
white line
menu gray tab bar
menu gray tab courses
white line
menu blue Current Schedule
white line
menu blue Onsite Courses
white line
menu blue Register Online
white line
menu blue Request Brochure
white line
menu blue Free On-Site Price Quote
white line
menu blue Download Catalog
white line
menu blue Distance Learning
black line  

Digital Signal Processing- An Introduction

With Practical Applications in MATLAB

Share |


Technical Training Short On Site Course Quote

This 3-day course provides an overview of digital signal processing (DSP) tools and techniques used to analyze digital signals and systems while also treating the design of DSP systems to perform important DSP operations such as signal spectral estimation, frequency selective filtering, and sample rate conversion. In contrast to typical DSP courses that needlessly focus on mathematical details and intricacies, this course emphasizes the practical tools utilized to create state-of-the-art DSP systems commonly used in real-world applications.

MATLAB is used throughout the course to illustrate important DSP concepts and properties, permitting the attendees to develop an intuitive understanding of common DSP functions and operations. MATLAB routines are used to design and implement DSP filter structures for frequency selection and multirate applications.

The course is valuable to engineers and scientists who are entering the signal processing field or as a review for professionals who desire a cohesive overview of DSP with illustrations and applications using MATLAB. A comprehensive set of notes and references as well as all custom MATLAB routines used in the course will be provided to the attendees.

Bringing a laptop with Matlab loaded would be helpful -BUT NOT REQUIRED- as there will be Matlab demonstrations throughout the course.


Dr. Brian Jennison is a Principal Engineer at the Johns Hopkins University Applied Physics Laboratory, where he has worked on signal processing efforts for radar, sonar, chemical detectors, and other sensor systems. He holds M.S. and Ph.D. degrees in Electrical Engineering from Purdue University and a B.S. degree in Electrical Engineering from the Missouri University of Science and Technology. He currently serves as Chair of the Electrical and Computer Engineering program for the Johns Hopkins University Engineering for Professionals, where he has taught courses in signals and systems, multi-dimensional and multi-rate digital signal processing.

Contact this instructor (please mention course name in the subject line)

What you will learn:

  • Compute and interpret the frequency-domain content of a discrete-time signal.
  • Design and implement finite-impulse response (FIR) and infinite-impulse response (IIR) digital filters, to satisfy a given set of specifications.
  • Apply digital signal processing techniques learned in the course to applications in multirate signal processing.
  • Utilize MATLAB to analyze digital signals, design digital filters, and apply these filters for a practical DSP system.

Course Outline:

  1. Discrete-Time Signals & Systems. Frequency concepts in continuous- and discrete-time. Fourier Series and Fourier Transforms. Linear time-invariant systems, convolution, and frequency response.

  2. Sampling. The Sampling Theorem, Aliasing, and Sample Reconstruction. Amplitude Quantization and Companding.

  3. The Discrete Fourier Transform (DFT) and Spectral Analysis. Definition and properties of the DFT, illustrated in MATLAB. Zero-padding, windowing, and efficient computational algorithms the Fast Fourier Transforms (FFTs). Circular Convolution and Linear Filtering with the FFT. Overlap-add and overlap-save techniques.

  4. Design of Digital Finite-Impulse Response (FIR) Filters. Filter Specifications in Magnitude and Phase. Requirements for linear phase. FIR filter design in MATLAB with Windows and Optimum Equiripple techniques.

  5. Design of Digital Infinite-Impulse Response (IIR) Filters. The z-transform and system stability. Butterworth, Chebyshev, and Elliptic filter prototypes. IIR filter design in MATLAB using impulse invariance and the Bilinear Transformation.

  6. Applications in Multirate Signal Processing. Signal decimation and interpolation. Sample rate conversion by a rational factor. Efficient implementation of narrowband filters. Polyphase filters.


    Tuition for this 3-day course is $1890 per person at one of our scheduled public courses. Onsite pricing is available. Please call us at 410-956-8805 or send an email to