top header
top gradation HOME top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line top vertical line menu gray
black line 2
menu gray tab More About ATI
menu blue ATI — Who We Are
white line
menu blue Contact ATI Courses
white line
menu blue List Of ATI Courses
white line
menu blue Attendees Testimonials
white line
menu blue The ATI FAQ Sheet
white line
menu blue Suggestions/Wait List
white line
menu blue New Courses
white line
menu blue Become an ATI Instructor
menu gray tab site resources
menu blue Acoustics & Sonar
white line
menu blue Rockets & Space
white line
menu blue GPS Technology
white line
menu blue ATI Blog
white line
menu blue ATI Space News
white line
menu blue ATI Site Map
white line
menu blue ATI Staff Tutorials
white line
menu blue ATI Sampler Page
white line
menu gray tab bar
menu gray tab courses
white line
menu blue Current Schedule
white line
menu blue Onsite Courses
white line
menu blue Register Online
white line
menu blue Request Brochure
white line
menu blue Free On-Site Price Quote
white line
menu blue Download Catalog
white line
menu blue Distance Learning
black line

Applied Physical Oceanography and Acoustics:
Controlling Physics, Observations, Models and Naval Applications

Share |


    Technical Training Short On Site Course Quote

    This three-day course is designed for engineers, physicists, acousticians, climate scientists, and managers who wish to enhance their understanding of this discipline or become familiar with how the ocean environment can affect their individual applications. Examples of remote sensing of the ocean, in situ ocean observing systems and actual examples from recent oceanographic cruises are given.

    The students will be able to access educational Java applets to visualize waves and key acoustic phenomena: Click here to view

    Other web-based resources include acoustic demonstration podcasts and iPod apps to conduct acoustic measurements. The student will also be armed with Internet resources for up-to-date information on sonar systems, undersea sound propagation models, and environmental databases. The student will leave with a clear understanding of how the ocean influences undersea sound propagation and scattering.
    View course sampler

    Wactch another video from this course



    Dr. David L. Porter is a Principal Senior Oceanographer at the Johns Hopkins University Applied Physics Laboratory (JHUAPL). Dr. Porter has been at JHUAPL for twenty-two years and before that he was an oceanographer for ten years at the National Oceanic and Atmospheric Administration. Dr. Porter's specialties are oceanographic remote sensing using space borne altimeters and in situ observations. He has authored scores of publications in the field of ocean remote sensing, tidal observations, and internal waves as well as a book on oceanography. Dr. Porter holds a BS in physics from University of MD, a MS in physical oceanography from MIT and a PhD in geophysical fluid dynamics from the Catholic University of America.

    Dr. Juan I. Arvelo is a Principal Senior Acoustician at JHUAPL. He earned a PhD degree in physics from the Catholic University of America. He served nine years at the Naval Surface Warfare Center and five years at Alliant Techsystems, Inc. He has 27 years of theoretical and practical experience in government, industry, and academic institutions on acoustic sensor design and sonar performance evaluation, experimental design and conduct, acoustic signal processing, data analysis and interpretation. Dr. Arvelo is an active member of the Acoustical Society of America (ASA) where he holds various positions including associate editor of the Proceedings On Meetings in Acoustics (POMA) and technical chair of the 159th joint ASA/INCE conference in Baltimore.

    Contact these instructors (please mention course name in the subject line)

What You Will Learn:

  • The physical structure of the ocean and its major currents.
  • The controlling physics of waves, including internal waves
  • How space borne altimeters work and their contribution to ocean modeling
  • How ocean parameters influence acoustics
  • Models and databases for predicting sonar performance

Course Outline:

  1. Importance of Oceanography. Review oceanography's history, naval applications, and impact on climate.

  2. Physics of The Ocean. Develop physical understanding of the Navier-Stokes equations and their application for understanding and measuring the ocean.

  3. Energetics Of The Ocean and Climate Change. The source of all energy is the sun. We trace the incoming energy through the atmosphere and ocean and discuss its effect on the climate.

  4. Wind patterns, El Niņo and La Niņa. The major wind patterns of earth define not only the vegetation on land, but drive the major currents of the ocean. Perturbations to their normal circulation, such as an El Niņo event, can have global impacts.

  5. Satellite Observations, Altimetry, Earth's Geoid and Ocean Modeling. The role of satellite observations are discussed with a special emphasis on altimetric measurements.

  6. Inertial Currents, Ekman Transport, Western Boundaries. Observed ocean dynamics are explained. Analytical solutions to the Navier-Stokes equations are discussed.

  7. Ocean Currents, Modeling and Observation. Observations of the major ocean currents are compared to model results of those currents. The ocean models are driven by satellite altimetric observations.

  8. Mixing, Salt Fingers, Ocean Tracers and Langmuir Circulation. Small scale processes in the ocean have a large effect on the ocean's structure and the dispersal of important chemicals, such as CO2.

  9. Wind Generated Waves, Ocean Swell and Their Prediction. Ocean waves, their physics and analysis by directional wave spectra are discussed along with present modeling of the global wave field employing Wave Watch III.

  10. Tsunami Waves. The generation and propagation of tsunami waves are discussed with a description of the present monitoring system.

  11. Internal Waves and Synthetic Aperture Radar (SAR) Sensing Of Internal Waves. The density stratification in the ocean allows the generation of internal waves. The physics of the waves and their manifestation at the surface by SAR is discussed.

  12. Tides, Observations, Predictions and Quality Control. Tidal observations play a critical role in commerce and warfare. The history of tidal observations, their role in commerce, the physics of tides and their prediction are discussed.

  13. Bays, Estuaries and Inland Seas. The inland waters of the continents present dynamics that are controlled not only by the physics of the flow, but also by the bathymetry and the shape of the coastlines.

  14. The Future of Oceanography. Applications to global climate assessment, new technologies and modeling are discussed.

  15. Underwater Acoustics. Review of ocean effects on sound propagation & scattering.

  16. Naval Applications. Description of the latest sensor, transducer, array and sonar technologies for applications from target detection, localization and classification to acoustic communications and environmental surveys.

  17. Models and Databases. Description of key worldwide environmental databases, sound propagation models, and sonar simulation tools.

From this course you will obtain the knowledge of the ocean environment, its controlling physics, acoustic propagation, in situ and remote sensing ocean observations and applications to naval operations and climate change.


    Tuition for this three-day course is $1740 per person at one of our scheduled public courses. Onsite pricing is available. Please call us at 410-956-8805 or send an email to

Register Now Without Obligation