If You Want to BE a Rocket Scientist, Maybe You should LISTEN to one

Video Clip: Click to Watch Everything about Orbital Mechanics is Counterintuitive  Award-winning rocket scientist, Thomas S. Logsdon really enjoys teaching this short course titled, ATI’s Orbital Mechanics: Ideas and Insights, because everything about orbital mechanics is counterintuitive. In this comprehensive four day short course, Mr. Logsdon uses four hundred clever color graphics to clarify these and […]
Each student will receive a new personal GPS Navigator with multi-channel capability
Video Clip: Click to Watch
Everything about Orbital Mechanics is Counterintuitive 
Award-winning rocket scientist, Thomas S. Logsdon really enjoys teaching this short course titled, ATI’s Orbital Mechanics: Ideas and Insights, because everything about orbital mechanics is counterintuitive. In this comprehensive four day short course, Mr. Logsdon uses four hundred clever color graphics to clarify these and a dozen other puzzling mysteries associated with orbital mechanics. He also provides you with a few simple one-page derivations using real-world inputs to illustrate all the key concepts being explored. For example, did you know that if you fly your spacecraft into a 100-mile circular orbit and: • Put on the brakes, your spacecraft speeds up! • Mash down the accelerator, it slows down!! • Throw a banana peel out the window and 45 minutes later it will come back and slap you in the face!!! Why not take a short course? Since 1984, the Applied Technology Institute (ATI) has provided leading-edge public courses and onsite technical training to DoD and NASA personnel, as well as contractors. ATI short courses are less than a week long and are designed to help you keep your professional knowledge up-to-date. Our courses provide a practical overview of space and defense technologies which provide a strong foundation for understanding the issues that must be confronted in the use, regulation and development of complex systems. Whether you are a busy engineer, a technical expert or a project manager, you can enhance your understanding of satellite systems in a short time. You will become aware of the basic vocabulary essential to interact meaningfully with your colleagues. Determine for yourself the value of our courses before you sign up. Click here for more information on this course Click below to see slide samples from this course   Click below to see a video clip of this course on YouTube. What You Will Learn When You Take this Course: • How do we launch a satellite into orbit and maneuver it into a new location? • How do today’s designers fashion performance-optimal constellations of satellites swarming the sky? • How do planetary swing by maneuvers provide such amazing gains in performance? • How can we design the best multi-stage rocket for a particular mission? • What are libration point orbits? Were they really discovered in 1772? How do we place satellites into halo orbits circling around these empty points in space? • What are JPL’s superhighways in space? How were they discovered? How are they revolutionizing the exploration of space? After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Each student will receive a new personal GPS Navigator with multi-channel capability. Please visit our website for more valuable information. About ATI and the Instructors Our mission here at ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. For more than 30 years, Thomas S. Logsdon, has conducted broad ranging studies on orbital mechanics at McDonnell Douglas, Boeing Aerospace, and Rockwell International His key research projects have included Project Apollo, the Skylab capsule, the nuclear flight stage and the GPS radionavigation system. Mr. Logsdon has taught 300 short courses and lectured in 31 different countries on six continents. He has written 40 technical papers and journal articles and 29 technical books including Striking It Rich in Space, Orbital Mechanics: Theory and Applications, Understanding the Navstar, and Mobile Communication Satellites. Dates and Locations The next date and location of this short course is: Jan 9-12, 2012 Cape Canaveral,FL


Sign Up For ATI Courses eNewsletter

Do You Get Shaken and Stirred with MIL-STD-810G?

Video Clip: Click to Watch ATI’S MILITARY STANDARD 810G (MIL-STD-810G) TESTING COURSE The course emphasizes topics you will use immediately. Suppliers to the military services protectively install commercial-off-the-shelf (COTS) equipment in our flight and land vehicles and in shipboard locations where vibration and shock can be severe This four-day class will provide education in the purpose […]
Negative Stiffness Vibration Isolator
Video Clip: Click to Watch
ATI’S MILITARY STANDARD 810G (MIL-STD-810G) TESTING COURSE
The course emphasizes topics you will use immediately. Suppliers to the military services protectively install commercial-off-the-shelf (COTS) equipment in our flight and land vehicles and in shipboard locations where vibration and shock can be severe
This four-day class will provide education in the purpose of each test, the equipment required to perform each test, and the methodology to correctly apply the specified test environments. Vibration and Shock methods will be covered together and will include an overview of Sine and Random Vibration as well as classical waveform shock testing, drop testing and Shock Response Spectrum Testing. Instrumentation, vibration equipment, control systems and fixture design will be covered. Each climatic test will be discussed individually, focusing on requirements, origination, equipment required, test methodology and understanding of results. Class members will participate in a tour of a lab that daily performs the full spectrum of 810G tests. Class discussion will be supported by projected visuals and video clips. Commencing with a review of basic vibrations, we will explore vibration measurements and analysis. We’ll compare sinusoidal vs. random vibration testing systems, specifications, standards and procedures. We will emphasize vibration and shock test fixture design, fabrication, experimental evaluation and usage. We will study shock measurement, shock response spectrum (SRS) and shock testing. Climatic testing will be looked at in great detail, emphasizing required equipment and instrumentation, correct interpretation of specifications and hints to ensure that the tests are brought to a successful conclusion. We laboratory test the protected equipment (1) to assure twenty years equipment survival and possible combat, also (2) to meet commercial test standards, IEC documents, military standards such as STANAG or MIL-STD-810G, etc. What you will learn: • perform vibration, shock and climatic tests • evaluate and select equipment to perform testing • convert field measured data into a test program, • interpret vibration and shock test requirements and results, • supervise vibration, shock and climatic tests, • specify and experimentally evaluate vibration and shock test fixtures When you visit a test lab or review a test program, you will have a good understanding of the requirements and execution of dynamics and climatics tests and so be able to ask meaningful questions and understand laboratory personnel responses. If you are in need of more technical training, then boost your career with the knowledge needed to provide better, faster, and cheaper solutions for sophisticated DoD and NASA systems. Why not take a short course instead? ATI short courses are less than a week long and are designed to help you keep your professional knowledge up-to-date. Our courses provide a practical overview of space and defense technologies which provide a strong foundation for understanding the issues that must be confronted in the use, regulation and development of complex systems. Course Outline, Samplers, and Notes After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Each participant will also receive a copy of Wayne Tustin’s text ‘A Minimal-Mathematics Introduction to the Fundamentals of Random Vibration and Shock Testing, HALT, ESS & HASS, also Measurements, Analysis & Calibration’, including a CD containing a number of video clips pertaining to sine and random vibration and shock behavior and testing. Please visit our website for more valuable information. About ATI and the Instructor Our mission here at ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Steve Brenner has been working in the field of environmental simulation and reliability testing for over 30 years. Beginning in the late sixties with reliability and design verification testing on the Lunar Module, the Space Shuttle in the eighties, to semiconductor manufacturing equipment in the nineties, Mr. Brenner has always been involved with the latest techniques for verifying equipment integrity through testing. Mr. Brenner began his career as an Environmental test engineer with Grumman Aerospace Corporation in New York, worked as design verification and reliability engineer for the Air Force, an Environmental Test Engineer for Lockheed Missiles and Space company, and spent 18 years with Kaiser Electronics in San Jose, where he managed the Environmental Test Lab and was involved with the design of hardware intended for severe environments. Mr. Brenner has been working as a consultant in the reliability testing field since 1996. Times, Dates, and Locations For the times, dates and locations of all of our short courses, please access the links below. Nov 1-4, 2011 Cincinnatti, OH Nov 14-17, 2011 Jupiter, FL Dec 5-8, 2011 Santa Clarita, CA


Sign Up For ATI Courses eNewsletter

Can You Tell Your Downlink from Your Uplink in the Dark of Space?

Video Clip: Click to Watch If not, then maybe you need ATI’s SATCOM Technology and Networks course This three-day short course provides accurate background in the fundamentals, applications and approach for cutting-edge satellite networks for use in military and civil government environments. The focus is on commercial SATCOM solutions (GEO and LEO) and government satellite systems […]
MILSTAR Satellite Communications System
Video Clip: Click to Watch
If not, then maybe you need ATI’s SATCOM Technology and Networks course This three-day short course provides accurate background in the fundamentals, applications and approach for cutting-edge satellite networks for use in military and civil government environments. The focus is on commercial SATCOM solutions (GEO and LEO) and government satellite systems (WGS, MUOS and A-EHF), assuring thorough coverage of evolving capabilities. It is appropriate for non-technical professionals, managers and engineers new to the field as well as experienced professionals wishing to update and round out their understanding of current systems and solutions. ATI’S SATCOM TECHNOLOGY AND NETWORKS COURSE What you will learn: • How a satellite functions to provide communications links to typical earth stations and user terminals • The various technologies used to meet requirements for bandwidth, service quality and reliability • Basic characteristics of modulation, coding and Internet Protocol processing • How satellite links are used to satisfy requirements of the military for mobility and broadband network services for warfighters • The characteristics of the latest US-owned MILSATCOM systems, including WGS, MUOS, A-EHF, and the approach for using commercial satellites at L, C, X, Ku and Ka bands • Proper application of SATCOM to IP networks Course Outline, Samplers, and Notes In addition to the course notes, each participant will receive a book of collected tutorial articles written by the instructor, and soft copies of the link budgets discussed in the course. Please visit our website for more valuable information. About ATI and the Instructors Our mission here at ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Bruce Elbert is a recognized SATCOM technology and network expert and has been involved in the satellite and telecommunications industries for over 35 years. He consults to major satellite organizations and government agencies in the technical and operations aspects of applying satellite technology. Prior to forming his consulting firm, he was Senior Vice President of Operations in the international satellite division of Hughes Electronics (now Boeing Satellite), where he introduced advanced broadband and mobile satellite technologies. He directed the design of several major satellite projects, including Palapa A, Indonesia’s original satellite system; the Hughes Galaxy satellite system; and the development of the first GEO mobile satellite system capable of serving handheld user terminals. He has written seven books on telecommunications and IT. Times, Dates, and Locations This short course can be presented at your facility at your convenience. An onsite presentation is economical when 6-8 people want the course and a great value if you have more than 10 who are interested. I suggest that you read through the course description and then call me personally, Jim Jenkins, at 410-956-8805 or toll free at 1-888-501-2100, and I’ll explain in detail what we can do for you, what it will cost, and what you can expect in results and future capabilities.


Sign Up For ATI Courses eNewsletter

Would YOU rather be counting Decibels (dBs) instead of Dollars?

Video Clip: Click to Watch ATI offers an Advanced Satellite Communications Systems course  This three-day course covers all the technology of advanced satellite communications, as well as the principles behind current state-of-the-art satellite communications equipment. New and promising technologies will be covered to develop an understanding of the major approaches, including network topologies, VSAT and IP […]
Earth: Only a good downlink away
Video Clip: Click to Watch
ATI offers an Advanced Satellite Communications Systems course 
This three-day course covers all the technology of advanced satellite communications, as well as the principles behind current state-of-the-art satellite communications equipment. New and promising technologies will be covered to develop an understanding of the major approaches, including network topologies, VSAT and IP networking over satellite. Link budgets, multiple access techniques, spread spectrum and bandwidth efficient modulations are some of the major topics covered. Since 1984, the Applied Technology Institute (ATI) has provided leading-edge public courses and onsite technical training to DoD and NASA personnel, as well as contractors. Our courses provide a practical overview of space and defense technologies which provide a strong foundation for understanding the issues that must be confronted in the use, regulation and development of these complex systems. You will become aware of the basic vocabulary essential to interact meaningfully with your colleagues. Our short courses are designed for individuals involved in planning, designing, building, launching, and operating space and defense systems. If you need of more technical training, then boost your career with the knowledge needed to provide better, faster, and cheaper solutions for these sophisticated DoD, NASA and commercial satellite systems. Course Outline, Samplers, and Notes ADVANCED SATELLITE COMMUNICATIONS SYSTEMS COURSE Determine for yourself the value of this course before you sign up. Click here to see Slide Samples of this course. Course Outline: 1. Introduction to SATCOM History and overview. Examples of current military and commercial systems. 2. Satellite orbits and transponder characteristics. 3. Traffic Connectivities: Mesh, Hub-Spoke, Point-to-Point, Broadcast. 4. Multiple Access Techniques: FDMA, TDMA, CDMA, Random Access. DAMA and Bandwidth-on-Demand. 5. Communications Link Calculations Definition of EIRP, G/T, Eb/No. Noise Temperature and Figure. Transponder gain and SFD. Link Budget Calculations. 6. Digital Modulation Techniques. BPSK, QPSK. Standard pulse formats and bandwidth. Nyquist signal shaping. Ideal BER performance. 7. PSK Receiver Design Techniques. Carrier recovery, phase slips, ambiguity resolution, differential coding. Optimum data detection, clock recovery, bit count integrity. 8. Overview of Error Correction Coding, Encryption, and Frame Synchronization. Standard FEC types. Coding Gain 9. RF Components. HPA, SSPA, LNA, Up/down converters. Intermodulation, band limiting, oscillator phase noise. Examples of BER Degradation. 10. TDMA Networks Time Slots. Preambles. Suitability for DAMA and BoD. 11. Characteristics of IP and TCP/UDP over satellite. Unicast and Multicast. Need for Performance Enhancing Proxy (PEP) techniques. 12. VSAT Networks and their system characteristics; DVB standards and MF-TDMA. 13. Earth Station Antenna types Pointing/Tracking. Small antennas at Ku band. FCC-Intelsat-ITU antenna requirements and EIRP density limitations. 14. Spread Spectrum Techniques. Military use and commercial PSD spreading with DS PN systems. Acquisition and tracking. Frequency Hop systems. 15. Overview of Bandwidth Efficient Modulation (BEM) Techniques. M-ary PSK, Trellis Coded 8PSK, QAM. 16. Convolutional coding and Viterbi decoding. Concatenated coding. Turbo coding. 17. Emerging Technology Developments and Future Trends. After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information. About ATI and the Instructors Our mission here at ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Dr. John Roach is a leading authority in satellite communications with 30+ years in the SATCOM industry. He has working on many development projects both as employee and consultant/contractor. His experience has focused on the systems engineering of state-of-the-art system developments, military and commercial, from the worldwide architectural level to detailed terminal tradeoffs and designs. He has been ans adjunct faculty member at Florida Institute of Technology where he taught a range of graduate communications courses. He has also taught SATCOM short courses all over the US and in London and Toronto, both publicly and in-house for both government and commercial organizations. In addition, he has been an expert witness in patent, trade secret, and government contracting cases. Dr. Roach has a Ph.D. in Electrical Engineering from Georgia Tech. Advanced Satellite Communications Systems: Survey of Current and Emerging Digital Systems. Dates and Locations The date and location of this short course is below: Jan 31-Feb 2, 2012 Cocoa Beach, FL

Sign Up For ATI Courses eNewsletter

Last Chance to Sign Up for Course on Unmanned Aircraft Systems (UAS)

Video Clip: Click to Watch ATI Offers Short Technical Course on Unmanned Aircraft Systems (UAS) Worldwide government, commercial and military use of Unmanned Aircraft Systems (UAS) is anticipated to increase significantly in the future. If you need to know more about UAS maybe you should attend the Applied Technology Institute (ATI) Unmanned Aircraft Systems and Applications […]
Video Clip: Click to Watch
ATI Offers Short Technical Course on Unmanned Aircraft Systems (UAS)
Worldwide government, commercial and military use of Unmanned Aircraft Systems (UAS) is anticipated to increase significantly in the future. If you need to know more about UAS maybe you should attend the Applied Technology Institute (ATI) Unmanned Aircraft Systems and Applications course? This one-day course is designed for engineers, aviation experts and project managers who wish to enhance their understanding of UAS. The course provides the “big picture” for those who work outside of the discipline. Each topic addresses real systems (Predator, Shadow, Global Hawk and others) and real-world problems and issues concerning the use and expansion of their applications. Attending training courses can also put you in touch with peers in your industry affording you the opportunity to network. Networking can help you discover new industry trends, as well as new ideas and insights from others. Our short courses are designed for individuals involved in planning, designing, building, launching, and operating space and defense systems. Whether you are a busy engineer, a technical expert or a project manager, you can enhance your understanding of complex systems in a short time. You will become aware of the basic vocabulary essential to interact meaningfully with your colleagues. Course Outline, Samplers and Notes But don’t take our word for it; determine for yourself the value of our UAS course before you sign up. Check out ourUAS Course Slide Samples or see a video clip about the course from the instructor at UAS on YouTube. After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information. About ATI and the Instructors Our mission here at the Applied Technology Institute (ATI) is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Mr. Mark N. Lewellen is the vice chair of an Unmanned Aircraft Systems (UAS) group in the United States that is responsible for generating future UAS spectrum requirements. He is also chairman of a global UAS group that may revise the international Radio Regulations. He is an instructor for a course designed for engineers, aviation experts and project managers who wish to enhance their understanding of UAS. He has twenty-five years of experience and has actively participated in over forty international meetings where he successfully advocated technical and regulatory issues. He is co-founder of RMT Spectrum Associates, Inc. Mr. Lewellen teaches GPS Workshops in conjunction with several Universities. He is an active member of Toastmasters International and an excellent speaker who knows how to take command of an audience. Dates, Times and Locations The UAS short course is currently scheduled for: • November 8th, 2011 in Columbia, MD • February 28th, 2012 in Columbia, MD Now is the time to think about bringing an ATI technical short course to your site. If there are eight or more people who are interested in a course, you save money if we bring the course to you. If you have fifteen or more students, you save over fifty percent compared to a public course.


Sign Up For ATI Courses eNewsletter

Do You Think Satellites are Sexy and not Lady Gaga?

Video Clip: Click to Watch ATI presents: An overview of commercial satellite communications hardware, operations, business and regulatory environment This three-day introductory course has been taught to rave reviews to thousands of industry professionals for over two decades. The material is frequently updated and the course is a primer to the concepts, jargon, buzzwords, and acronyms […]
Earth: As Seen from Geostationary Orbit…ohhhhh!
Video Clip: Click to Watch
ATI presents: An overview of commercial satellite communications hardware, operations, business and regulatory environment
This three-day introductory course has been taught to rave reviews to thousands of industry professionals for over two decades. The material is frequently updated and the course is a primer to the concepts, jargon, buzzwords, and acronyms of the industry, plus an overview of commercial satellite communications hardware, operations, and business environment. Here is Dr. Mark R. Chartrand, course instructor, on YouTube.
Since 1984, the Applied Technology Institute (ATI) has provided leading-edge public courses and onsite technical training to DoD and NASA personnel, as well as contractors. Whether you are a busy engineer, a technical expert or a project manager, you can enhance your understanding of complex satellite systems in a short time. You will become aware of the basic vocabulary essential to interact meaningfully with your colleagues. Here is more about the course. SATELLITE COMMUNICATIONS COURSE — AN ESSENTIAL INTRODUCTION The first section provides non-technical people with the technical background necessary to understand the space and earth segments of the industry, culminating with the importance of the link budget. The concluding section of the course provides an overview of the business issues, including major operators, regulation and legal issues, and issues and trends affecting the industry. What You Will Learn: • How do commercial satellites fit into the telecommunications industry? • How are satellites planned, built, launched, and operated? • How do earth stations function? • What is a link budget and why is it important? • What legal and regulatory restrictions affect the industry? • What are the issues and trends driving the industry? The course is intended primarily for non-technical people who must understand the entire field of commercial satellite communications, and who must understand and communicate with engineers and other technical personnel. The secondary audience is technical personnel moving into the industry who need a quick and thorough overview of what is going on in the industry. Concepts are explained at a basic level, minimizing the use of math, and providing real-world examples. Several calculations of important concepts such as link budgets are presented for illustrative purposes, but the details need not be understood in depth to gain an understanding of the concepts illustrated. Course Outline, Samplers, and Notes Our short courses are designed for individuals involved in planning, designing, building, launching, and operating space and satellite systems. Don’t believe it? Here is what one of our recent students had to say about this course. “I truly enjoyed your course and hearing of your adventures in the Satellite business. You have a definite gift in teaching style and explanations.” Still not convinced? You can see for yourself the value of our course before you sign up. View Satellite Course Sampler You can also check out some of our other short courses on the ATI YouTube channel. Attendees receive a copy of the instructor’s new textbook, Satellite Communications for the Non-Specialist, and will have time to discuss issues pertinent to their interests. After completing the course, you will also receive a certificate of completion. Please visit our website for more valuable information. About ATI and the Instructors Our mission here at ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Dr. Mark R. Chartrand is a consultant and lecturer in satellite telecommunications and the space sciences. For more than 25 years he has presented professional seminars on satellite technology and telecommunications to satisfied individuals and businesses throughout the United States, Canada, Latin America, Europe and Asia. Dr. Chartrand has served as a technical and/or business consultant to NASA, Arianespace, GTE Spacenet, Intelsat, Antares Satellite Corp., Moffett-Larson-Johnson, Arianespace, Delmarva Power, Hewlett-Packard, and the International Communications Satellite Society of Japan, among others. He has appeared as an invited expert witness before Congressional subcommittees and was an invited witness before the National Commission on Space. He was the founding editor and the Editor-in-Chief of the annual The World Satellite Systems Guide, and later the publication Strategic Directions in Satellite Communication. He is author of six books and hundreds of articles in the space sciences. He has been chairman of several international satellite conferences, and a speaker at many others. Times, Dates, and Locations The times, dates and locations of our Satellite Communications – An Essential Introduction short course are as follows: Sep 20-22, 2011 Cocoa Beach Nov 29-Dec 1, 2011 Laurel, MD Apr 17-19, 2012 Columbia, MD

Sign Up For ATI Courses eNewsletter

Why are Submarines Painted Black?

Video Clip: Click to Watch From an attack (SSN) to a fleet ballistic missile (SSBN) submarine, submarines are presented as a system of sub-systems A submarine is among the most technologically advanced machines ever built. The combination of computer technology, precision navigation, atmosphere regeneration, sensitive sonar equipment, sound quieting, nuclear power, and precision weapons make for […]
Seaman paint topside on the USS Oklahoma City (SSN 723)
Video Clip: Click to Watch
From an attack (SSN) to a fleet ballistic missile (SSBN) submarine, submarines are presented as a system of sub-systems
A submarine is among the most technologically advanced machines ever built. The combination of computer technology, precision navigation, atmosphere regeneration, sensitive sonar equipment, sound quieting, nuclear power, and precision weapons make for a most complex environment. Submarines are always deployed in the oceans around the world. Submarines are painted black to help them hide, as it is essential for submarines to hide while doing their job. The black color has proven to best help the submarine hide in the ocean. Whether you are a busy engineer, a technical expert or a project manager, you can enhance your understanding of complex systems, such as submarines, in a short time. Since 1984, the Applied Technology Institute (ATI) has provided leading-edge public short courses and onsite technical training to military personnel, as well as contractors. Why not take a short course? ATI short courses are less than a week long and are designed to help you keep your professional knowledge up-to-date. Our courses provide a practical overview of technologies which provide a strong foundation for understanding the issues that must be confronted in the use, regulation and development of these complex underwater systems. You will also become aware of the basic vocabulary essential to interact meaningfully with your colleagues. SUBMARINES AND ANTI-SUBMARINE WARFARE COURSE This three-day course presents the fundamental philosophy of submarine design, construction, and stability as well as the utilization of submarines as cost-effective warships at sea. A thumbnail history of waging war by coming up from below the surface of the sea relates prior gains—and, prior set-backs. Today’s submarine tasking is discussed in consonance with the strategy and policy of the US, and the goals, objectives, mission, functions, tasks, responsibilities, and roles of the US Navy. The foreboding efficacy of submarine warfare is analyzed referencing some enthralling calculations for its Benefits-to-Cost, in that Submarines Sink Ships! The submarine threat for the 21st century is discussed, posing such questions as: “Will diesel-electric submarines, as a cost-effective weapon for the Third World, be a significant threat to the national economies of other nations? Is shallow-water ASW in the littoral approaches to a coastline of a country embroiled in a Low-Intensity-Conflict a Mission-Essential-Need— for the US too? Will it still be best to sink a submarine while it is in port? So, where do We, the People… go from here? Herein the submarine is presented as a system in its self, thus an aim of the instructor is to clarify the essences of sub-system interfaces for engineers and scientists involved in testing or R&D for submarine systems. Attendees who in the past have worked with specific submarine sub-systems can consider this course as Continuing Education. Also, because of its introductory nature, this course will be enlightening to those just entering the field. Course Outline: • Thumbnail History of Warfare from Beneath the Sea: From a glass-barrel in circa 300 BC, to SSN 774 in 2004. • The Efficacy of Submarine Warfare — WWI and WWII: A Benefit/Cost Analysis to depict just how well Submarines Sink Ships! • Submarine Organization — and, Submariners: What is the psyche and disposition of those Qualified in Submarines, as distinguished by a pair of Dolphins? And, will new submariners be able to measure up to the legend of Steel Boats, and Iron Men! • Submarine Design & Construction: Fundamentals of Form, Fit, & Function, plus an analysis of ship-stability. • Principles of Sound in the Sea: A basis for a rudimentary primer on the “Calculus of Acoustical Propagation.” • Combat System Suite — Components & Nomenclature: In OHIO, LOS ANGELES, SEAWOLF, and VIRGINIA. • Submarines of the World — by Order of Battle: How Many, from Where. To do What, to Whom? • Antisubmarine Warfare — Our Number One Priority: For the USN, ASW is a combined-arms task for forces from above, on, and below the surface of the sea — inclusive of littoral waters — to engage The Enemy Below! This course is valuable to engineers and scientists in the research, development or testing of submarine systems, as well as newcomers to the field or those who want an overview Additional Resource: Capt. Wellborn’s article in PDF format, The Efficacy of Submarine Warships, provides a useful overview of the topic of submarine design, construction and deployment. ADVANCED UNDERSEA WARFARE COURSE Advanced Undersea Warfare (USW) covers the latest information about submarine employment in future conflicts. The course is taught by a leading innovator in submarine tactics. The roles, capabilities and future developments of submarines in littoral warfare are emphasized. The technology and tactics of modern nuclear and diesel submarines are discussed. The importances of stealth, mobility, and firepower for submarine missions are illustrated by historical and projected roles of submarines. Differences between nuclear and diesel submarines are reviewed. Submarine sensors (sonar, ELINT, visual) and weapons (torpedoes, missiles, mines, special forces) are presented. Advanced USW gives you a wealth of practical knowledge about the latest issues and tactics in submarine warfare. The course provides the necessary background to understand the employment of submarines in the current world environment. Advanced USW is valuable to engineers and scientists who are working in research, development or testing of submarine systems. It provides the knowledge and perspective to understand advanced USW in shallow water and regional conflicts. Course Outline: • Mechanics and Physics of Submarines — Stealth, mobility, firepower, and endurance. The hull – tradeoffs between speed, depth, and payload. The “Operating Envelope”. The “Guts” – energy, electricity, air, and hydraulics. • Submarine Sensors — Passive sonar. Active sonar. Radio frequency sensors. Visual sensors. Communications and connectivity considerations. Tactical considerations of employment. • Submarine Weapons and Off-Board Devices — Torpedoes. Missiles. Mines. Countermeasures. Tactical considerations of employment. Special Forces. • Historical Employment of Submarines — Coastal defense. Fleet scouts. Commerce raiders. Intelligence and warning. Reconnaissance and surveillance. Tactical considerations of employment. • Cold War Employment of Submarines — The maritime strategy. Forward offense. Strategic anti-submarine warfare. Tactical considerations of employment. • Submarine Employment in Littoral Warfare — Overt and covert “presence”. Battle group and joint operations support. Covert mine detection, localization and neutralization. Injection and recovery of Special Forces. Targeting and bomb damage assessment. Tactical considerations of employment. Results of recent out-year wargaming. • Littoral Warfare “Threats” — Types and fuzing options of mines. Vulnerability of submarines compared to surface ships. The diesel-electric or air-independent propulsion submarine “threat”. Vulnerability of submarines compared to surface ships. The “Brown-water” acoustic environment. Sensor and weapon performance. Non-acoustic anti-submarine warfare. Tactical considerations of employment. • Advanced Sensor, Weapon & Operational Concepts — Future submarine concepts. Strike, Anti-air and anti Theater Ballistic Missile weapons. Autonomous underwater vehicles and deployed off-board systems. Improved C-cubed. The blue-green laser and other enabling technology. Some unsolved issues of jointness. Course Outline, Samplers, and Notes This basic and advance course are designed for individuals involved in planning, designing, building, launching, and operating submarine systems. Determine for yourself the value of our courses before you sign up. View course sampler for Submarines and Anti-Submarine Warfare course here or the Advanced Undersea Warfare course here. https://secureservercdn.net/198.71.189.232/56v.d29.myftpupload.com/sampler/Submarines%20&%20their%20Combat%20Systems.pdf https://secureservercdn.net/198.71.189.232/56v.d29.myftpupload.com/sampler/Advanced_Undersea_Warfare.pdf After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information. About ATI and the Instructors Our mission here at ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Submarines and Anti-Submarine Warfare course Captain Ray Wellborn, USN (retired) served over 13 years of his 30-year Navy career in submarines. He has a BSEE degree from the US Naval Academy and a MSEE degree from the Naval Postgraduate School. He also has an MA from the Naval War College. He had two major commands at sea and one ashore: USS MOUNT BAKER (AE 34), USS DETROIT (AOE 4), and the Naval Electronics Systems Engineering Center, Charleston. He was Program Manager for Tactical Towed Array Sonar Systems and Program Director for Surface Ship and Helicopter ASW Systems for the Naval Sea Command in Washington, DC. After retirement in 1989, he was the Director of Programs, ARGOTEC, Inc.: and, oversaw the manufacture of advanced R&D models for large underwater acoustic projectors. From 1992 to 1996, he was a Senior Lecturer in the Marine Engineering Department of Texas A&M, Galveston. Since 1996, he has been an independent consultant for International Maritime Affairs. Advanced Undersea Warfare course Capt. James Patton (USN ret.) is President of Submarine Tactics and Technology, Inc. and is considered a leading innovator of pro- and anti-submarine warfare and naval tactical doctrine. His 30 years of experience includes actively consulting on submarine weapons, advanced combat systems, and other stealth warfare-related issues to over 30 industrial and government entities. While at OPNAV, Capt Patton actively participated in submarine weapon and sensor research and development, and was instrumental in the development of the towed array. As Chief Staff Officer at Submarine Development Squadron Twelve (SUBDEVRON 12), and as Head of the Advanced Tactics Department at the Naval Submarine School, he was instrumental in the development of much of the current tactical doctrine. Commodore Bhim Uppal former Director of Submarines for the Indian Navy and he is now a consultant with American Systems Corporation. He will discuss the performance and tactics of diesel submarines in littoral waters. He has direct experience onboard FOXTROT, KILO, and Type 1500 diesel electric submarines. He has over 25 years of experience in diesel submarines with the Indian Navy and can provide a unique insight into the thinking, strategies, and tactics of foreign submarines. He helped purchase and evaluate Type 1500 and KILO diesel submarines. Times, Dates, and Locations For the times, dates and locations of all of these two short courses, please access the ATI website here.


Sign Up For ATI Courses eNewsletter

ATI Announces New Course, Theory and Fundamentals of Cyber Warfare

Video Clip: Click to Watch Cyber Warfare is All over the World’s News Headlines Offered in response to the growing need for businesses and military facilities to quickly gain an understanding of cyber threats and institute cyber security defenses, the Applied Technology Institute (ATI) announces a new two-day professional development short course, Theory and Fundamentals of […]
US Cyber Command is Now Activated
Video Clip: Click to Watch
Cyber Warfare is All over the World’s News Headlines
Offered in response to the growing need for businesses and military facilities to quickly gain an understanding of cyber threats and institute cyber security defenses, the Applied Technology Institute (ATI) announces a new two-day professional development short course, Theory and Fundamentals of Cyber Warfare
If you already know this course is for you, you can click here now to view the full course description
CYBER WARFARE -THEORY AND FUNDAMENTALS COURSE The course is targeted especially to DoD analysts, specialists and engineers in security related facilities in the Washington, DC, Virginia and Maryland metro area, which has the largest concentration of DoD national security related facilities in the United States. Those facilities, along with the research and development contractors they work with, are building their resources to tackle the growing need for cyber security experts. World leaders, including the United States, Russia, South Korea and Great Britain, are scrambling to organize against the rapidly increasing varieties of threats such as spyware and malware, spoofing, phishing and botnets that are having devastating effects around the world. Digital intelligence experts have labeled these escalating cyber threats as a “Global Cyber Cold War”. Maryland Governor, Martin O’Malley, was recently interviewed on 103.5 FM WTOP radio identifying Maryland as the next, “silicon valley” of cyber security. “Cyberspace has emerged as a mainstream warfare domain on par with air, land, sea, and space domains. This advancement to a bona fide battle space arises from the de facto behaviors of entities ranging from international superpowers to improvised non-state organizations. As a result, government and military organizations are developing new doctrines, establishing domain-focused operational hierarchies, and acquiring new systems capabilities to maintain cyberspace as a viable resource to serve the national interest,” Course Outline, Samplers, and Notes Course Outline: • Cyberspace as a Warfare Domain. Domain terms of reference. Comparison of operational missions conducted through cyberspace. Operational history of cyber warfare. • Stack Positioning as a Maneuver Analog. Exploring the space where tangible cyber warfare maneuver really happens. Extend the network stack concept to other elements of cyberspace. Understand the advantage gained through proficient cyberscape navigation. • Organizational Constructs in Cyber Warfare. Inter-relationships between traditional and emerging warfare, intelligence, and systems policy authorities. • Cyberspace Doctrine and Strategy. National Military Strategy for Cyberspace Operations. Comprehensive National Cybersecurity Initiative (CNCI). Developing a framework for a full spectrum cyberspace capabilities. • Legal Considerations for Cyber Warfare. Overview of pertinent US Code for cyberspace. Adapting the international Law of Armed Conflict to cyber warfare. Decision frameworks and metaphors for making legal choices in uncharted territory. • Operational Theory of Cyber Warfare. Planning and achieving cyber effects. Understanding policy implications and operational risks in cyber warfare. Developing a cyber deterrence strategy. • Cyber Warfare Training and Exercise Requirements. Understanding of the depth of technical proficiency and operational savvy required to develop, maintain, and exercise integrated cyber warfare capabilities. • Cyber Weaponization. Cyber weapons taxonomy. Weapon-target interplay. Test and Evaluation Standards. Observable effects. • Command & Control for Cyber Warfare. Joint Command & Control principles. Joint Battlespace Awareness. Situational Awareness. Decision Support. • Survey of International Cyber Warfare Capabilities. Open source exploration of cyber warfare trends in India, Pakistan, Russia, and China. After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information. About ATI and the Instructors Our mission here at ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. The instructor for ATI’s new Theory and Fundamentals of Cyber Warfare course is Albert Kinney, who brings more than 20 years of experience in research and operational cyberspace mission areas including the initial development and first operational employment of the Naval Cyber Attack Team. Kinney says, “I designed the course to focus on providing a top-down view of both the challenges and opportunities encountered in this new warfare domain. Attendees will gain insight to emerging requirements and trends affecting the implementation of cyber warfare systems, policy, and operations that will inform your strategy and focus your efforts in cyberspace.”


Sign Up For ATI Courses eNewsletter

Unmanned Aircraft Systems (UAS) course now available

Video Clip: Click to Watch Mark Lewellen of RMT Spectrum Associates, named Instructor for Unmanned Aerial Systems (UAS) course The Applied Technology Institute (ATI) is pleased to announce that Mark N. Lewellen of RMT Associates, Inc. has been selected to teach an Unmanned Aircraft Systems (UAS) course. UAS are a dynamically growing area of interest to the […]
Global Hawk Ready for Nighttime Mission
Video Clip: Click to Watch
Mark Lewellen of RMT Spectrum Associates, named Instructor for Unmanned Aerial Systems (UAS) course
The Applied Technology Institute (ATI) is pleased to announce that Mark N. Lewellen of RMT Associates, Inc. has been selected to teach an Unmanned Aircraft Systems (UAS) course. UAS are a dynamically growing area of interest to the military. They range from the small single man launched Raven system to the large armed Predator system. This one-day course is designed for engineers, aviation experts and project managers who wish to enhance their understanding of UAS. The course provides the “big picture” for those who work outside of the discipline. Each topic addresses real systems (Predator, Shadow, Warrior and others) and real-world problems and issues concerning the use and expansion of their applications. What You Will Learn: • Categories of current UAS and their aeronautical capabilities • Major manufactures of UAS • The latest developments and major components of a UAS • The types of sensor data can UAS provide • Regulatory and spectrum issues associated with UAS • National Airspace System including the different classes of airspace • How UAS will gain access to the National Airspace System (NAS) A more complete course description can be found here Course Outline, Samplers, and Notes Our short courses are designed for individuals involved in planning, designing, building, launching, and operating space and defense systems. Determine for yourself the value of this UAS course before you sign up: UAS Class Video Clip #1 UAS Class Video Clip #2 Or, see slide samples from this UAS Short course. After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information. About ATI and the Instructors Our mission here at ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Mr. Mark N. Lewellen has over twenty five years of experience with a wide variety of space, satellite and aviation related projects, including the Predator/Shadow/Warrior/Global Hawk UAVs, Orbcomm, Iridium, Sky Station, and aeronautical mobile telemetry systems. More recently he has been working in the exciting field of UAS. He is currently the Vice Chairman of a UAS Sub-group under Working Party 5B which is leading the US preparations to find new radio spectrum for UAS operations for the next World Radiocommunication Conference in 2012 under Agenda Item 1.3. He is also a technical advisor to the US State Department and a member of the National Committee which reviews and comments on all US submissions to international telecommunication groups, including the International Telecommunication Union (ITU). Times, Dates, and Locations ATI’s UAS and Applications short course is currently scheduled for: Nov 8, 2011 Columbia, MD Feb 28, 2012 Columbia, MD

Sign Up For ATI Courses eNewsletter

What there is to Know Grows Exponentially Every Day

Thomas Edison and His Phonograph (1877) Video Clip: Click to Watch In a knowledge-based economy, your success is directly proportional to the amount of knowledge you possess As Thomas Edison observed, “We don’t know one millionth of one percent about anything.” At the rate at which new information is generated today, doesn’t it seem like the […]
Thomas Edison and His Phonograph (1877)
Thomas Edison and His Phonograph (1877)
Video Clip: Click to Watch
In a knowledge-based economy, your success is directly proportional to the amount of knowledge you possess
As Thomas Edison observed, “We don’t know one millionth of one percent about anything.” At the rate at which new information is generated today, doesn’t it seem like the gap between what you know and what you need is to know is growing at a dizzying pace? From submarine sonar to military radar to an orbiting spacecraft, you or your team must face the challenges of tomorrow with what you know today. With the practical knowledge gained from a short course, you can put textbook theories into real-world practice and expand your problem-solving and risk management skills significantly. Whether you are a busy engineer, a technical expert or a project manager, you can enhance your understanding of these complex systems in a short time. Since 1984, the Applied Technology Institute (ATI) has provided leading-edge public courses and onsite technical training to DoD and NASA personnel, as well as contractors. Our courses provide a practical overview of space and defense technologies which provide a strong foundation for understanding the issues that must be confronted in the use, regulation and development of complex systems. You will become aware of the basic vocabulary essential to interact meaningfully with your colleagues. Course Outline, Samplers, and Notes Our short courses are designed for individuals involved in planning, designing, building, launching, and operating space and defense systems. Determine for yourself the value of our courses before you sign up. See our samples (See Slide Samples) on some of our courses. Or check out the new ATI channel on YouTube. After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information.


Sign Up For ATI Courses eNewsletter

Do You Resonate with Shock, Noise and Vibration?

  Video Clip: Click to Watch Two Short Courses from ATI on Vibration, Shock or Noise in Vehicles, Devices, and Equipment If you are concerned with vibration, shock or noise in vehicles, devices, and equipment; then Applied Technology Institute (ATI) short courses maybe for you. Why not take a short course? Our short courses are less […]
Negative Stiffness Vibration Isolator
 
Video Clip: Click to Watch
Two Short Courses from ATI on Vibration, Shock or Noise

in Vehicles, Devices, and Equipment

If you are concerned with vibration, shock or noise in vehicles, devices, and equipment; then Applied Technology Institute (ATI) short courses maybe for you. Why not take a short course? Our short courses are less than a week long and are designed to help you keep your professional knowledge up-to-date. They provide a practical overview of space and defense technologies which furnish a strong foundation for understanding the issues that must be confronted in the use, regulation and development of complex systems. If you are test personnel who conduct or supervise or “contract out” vibration and shock tests, then take the three-day course fundamentals course. It also benefits design, quality and reliability specialists who interface with vibration and shock test activities. If you have some prior acquaintance with vibration or noise fields, then you should sign up for the more advanced four day course. It emphasizes understanding of the relevant phenomena and concepts in order to enable the participants to address a wide range of practical problems insightfully. See sections below for more details on these two short courses from ATI. FUNDAMENTALS OF RANDOM VIBRATION & SHOCK TESTING This three-day course is primarily designed for test personnel who conduct or supervise or “contract out” vibration and shock tests. It also benefits design, quality and reliability specialists who interface with vibration and shock test activities. From this course you will obtain the ability to understand and communicate meaningfully with test personnel, perform basic engineering calculations and evaluate tradeoffs between test equipments’ and procedures. Each student receives the instructor’s brand new, minimal-mathematics, minimal-theory hardbound text Random Vibration & Shock Testing, Measurement, Analysis & Calibration. This 444 page, 4-color book also includes a CDROM with video clips and animations. What you will learn: • How to plan, conduct and evaluate vibration and shock tests and screens. • How to attack vibration and noise problems. • How to make vibration isolation, damping and absorbers work for vibration and noise control. • How noise is generated and radiated, and how it can be reduced. VIBRATION & NOISE CONTROL This course is intended for engineers and scientists concerned with the vibration reduction and quieting of vehicles, devices, and equipment. The course will provide guidance relevant to design, problem solving, and development of improvements. It will emphasize understanding of the relevant phenomena and concepts in order to enable the participants to address a wide range of practical problems insightfully. The instructors will draw on their extensive experience to illustrate the subject matter with examples related to the participant’s specific areas of interest. Although the course will begin with a review and will include some demonstrations, participants ideally should have some prior acquaintance with vibration or noise fields. Each participant will receive a complete set of course notes and the text Noise and Vibration Control Engineering, a $210 value. What you will learn: How to attack vibration and noise problems What means are available for vibration and noise control? How to make vibration isolation, damping, and absorbers work How noise generated and radiated, and how it can be reduced? Course Outline, Samplers, and Notes Determine for yourself the value of these courses before you sign up. • Fundamentals of Random Vibration & Shock Testing course slide sampler • Vibration & Noise Control course slide sampler Our other short courses are designed for individuals involved in planning, designing, building, launching, and operating space and defense systems. See our samples (See Slide Samples) on some of our courses. Or check out the new ATI channel on YouTube. After attending a course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information. About ATI and the Instructors Since 1984, ATI has provided leading-edge public courses and onsite technical training to DoD and NASA personnel, as well as contractors. Whether you are a busy engineer, a technical expert or a project manager, you can enhance your understanding of complex systems in a short time. You will become aware of the basic vocabulary essential to interact meaningfully with your colleagues. Our mission here at ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Fundamentals of Random Vibration & Shock Testing course Wayne Tustin has since 1995 been president of a specialized engineering school and consultancy he founded in Santa Barbara, CA. His BSEE degree is from the University of Washington, Seattle. He is a licensed Professional Engineer – Quality in the State of California. Wayne’s first encounter with vibration was at Boeing/Seattle, performing what later came to be called modal tests, on the XB-52 prototype of that highly reliable platform. Subsequently he headed field service and technical training for a manufacturer of electrodynamic shakers, before establishing another specialized school on which he left his name. Wayne has written several books and literally hundreds of articles dealing with practical aspects of vibration and shock measurement and testing. Vibration & Noise Control course Dr. Eric Ungar has specialized in research and consulting in vibration and noise for more than 40 years, published over 200 technical papers, and translated and revised Structure-Borne Sound. He has led short courses at the Pennsylvania State University for over 25 years and has presented numerous seminars worldwide. Dr. Ungar has served as President of the Acoustical Society of America, as President of the Institute of Noise Control Engineering, and as Chairman of the Design Engineering Division of the American Society of Mechanical Engineers. ASME honored him with its Trent-Crede Medal in Shock and Vibration. ASA awarded him the Per Bruel Gold Medal for Noise Control and Acoustics for his work on vibrations of complex structures, structural damping, and isolation. Dr. James Moore has, for the past twenty years, concentrated on the transmission of noise and vibration in complex structures, on improvements of noise and vibration control methods, and on the enhancement of sound quality. He has developed Statistical Energy Analysis models for the investigation of vibrations and noise complex structures as submarines, helicopters, and automobiles and has been instrumental in the acquisition of corresponding data bases. He has participated in the development of active noise control systems, noise reduction coating and signal conditioning means, as well as in the presentation of numerous short courses and industrial training programs. Times, Dates, and Locations Fundamentals of Random Vibration & Shock Testing Sep 20-22, 2011 Detroit, MI Oct 4-6, 2011 Santa Clarita, CA Nov 7-9, 2011 Acton, MA Vibration & Noise Control Sep 26-29, 2011 Boston, MA Mar 12-15, 2012 Columbia, MD Apr 30-May 3, 2012 Boston, MA  

Sign Up For ATI Courses eNewsletter

Do You Have a Need to Know about Unmanned Aircraft Systems (UAS)?

MQ-9 Reaper Taxis Down the Runway Video Clip: Click to Watch ATI offers Unmanned Aircraft Systems (UAS) course Worldwide commercial, government and military use of Unmanned Aircraft Systems (UAS) is expected to increase significantly in the future, placing unprecedented demands on scare radio resources. In fact, the Teal Group’s 2009 market study estimates that UAS spending […]
MQ-9 Reaper Taxis Down the Runway
MQ-9 Reaper Taxis Down the Runway
Video Clip: Click to Watch
ATI offers Unmanned Aircraft Systems (UAS) course
Worldwide commercial, government and military use of Unmanned Aircraft Systems (UAS) is expected to increase significantly in the future, placing unprecedented demands on scare radio resources. In fact, the Teal Group’s 2009 market study estimates that UAS spending will almost double over the next decade, from current worldwide UAS expenditures of $4.4 billion annually to $8.7 billion within a decade
Will YOU need to learn more about this exciting field?
Applied Technology Institute (ATI) is pleased to announce their one-day short course on Unmanned Aircraft Systems (UAS). Since 1984, the Applied Technology Institute (ATI) has provided leading-edge public courses and onsite technical training to DoD and NASA personnel, as well as contractors. With the practical knowledge you will gain from this course, you can recognize the different classes and types of UAVs, how to optimize their specific applications, how to evaluate and compare UAS capabilities, interact meaningfully with colleagues and master the UAS terminology. Are UAVs coming to airspace near you? Do you want to learn more about UAS but: • Don’t have time for a full semester course? • Is the nearest campus all the way across town? • Can’t move to North Dakota for an undergrad degree in UAS? If one or more of situations apply to you or you are just in need of more UAS-related knowledge, then boost your career with the information needed to provide better, faster, and cheaper solutions for your customers. Why not take our UAS short course instead? This one-day course is designed to help you keep your professional knowledge up-to-date on the use, regulation and development of these complex systems. Course Outline, Samplers, and Notes If you sign up for this class, whether you are a busy engineer, a technical expert or a project manager, you will enhance your understanding of these complex systems in a short time. Here is the instructor, Mr. Mark N. Lewellen, with an introduction to his class on YouTube.

Still not convinced? Then please see our UAS Course Slide Sampler with actual course materials. After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information.


Sign Up For ATI Courses eNewsletter

Watch Quadrotor Drone UAV Playing Catch at the Flying Machine Arena research facility at the Swiss Federal Institute of Technology, in Zurich

Have your played catch with your UAV today? IF you want to learn more about UAVs and see more videos, see my Unmanned Aircraft Systems and Applications course at https://aticourses.com/unmanned_aircraft_systems.html
Have your played catch with your UAV today?

IF you want to learn more about UAVs and see more videos, see my Unmanned Aircraft Systems and Applications course at https://aticourses.com/unmanned_aircraft_systems.html


Sign Up For ATI Courses eNewsletter

Persistent surveillance on a non-satellite budget is goal of U.S. military airship development

Tony White, Owner at Galaxy Blimps LLC and a member of my LinkedIn UAS group, is quoted extensively in this article. I used to work for an airship startup called SkyStation International and they do have their advantages (and disadvantages to be sure). They (and aerostats) also work well with UAS. Going back as far […]
Tony White, Owner at Galaxy Blimps LLC and a member of my LinkedIn UAS group, is quoted extensively in this article. I used to work for an airship startup called SkyStation International and they do have their advantages (and disadvantages to be sure). They (and aerostats) also work well with UAS. Going back as far as the American Civil War,lighter-than-air vehicles — airships, hot air balloons, and aerostats — have performed a variety of missions for the military. During World War I large military airships dropped bombs and performed surveillance. For a brief period of time in the 1930s the U.S. explored using them as “flying aircraft carriers,” says Ron Browning business development lead for persistent surveillance at Lockheed Martin Mission Systems & Sensors in Akron, Ohio. Today, U.S. forces deploy these floating platforms as eyes in the sky in Iraq, Afghanistan, and around the world to perform persistent surveillance, which means missions that last days, weeks, and even months up in the air. “Persistent surveillance is around the clock — 24/7 — monitoring for an extended period of time, monitoring that is in stark contrast to that provided by aircraft, which have surveillance-time limitations dictated by fuel consumption/capacity,” says Maj. Robert Rugg, assistant product manager persistent surveillance devices for the U.S. Army Program Manager Robotic and Unmanned Systems office in Huntsville, Ala. There are two main types of lighter-than-air vehicles used or in development for military operations — airships and aerostats, Browning says. “An aerostat is tethered while an airship is free flying,” he explains. Two free-flying programs in development are the High Altitude Airship (HAA) being developed by Browning’s team at Lockheed Martin and the Long Endurance Multi-Intelligence Vehicle (LEMV), being designed by Northrop Grumman in Melbourne, Fla., for medium altitudes, Browning says. They are both airship platforms. Aerostats The most deployed vehicles at the moment are aerostats, which often are used with unmanned aircraft systems (UASs) or as a relatively inexpensive replacement to UASs to provide non-stop coverage of strategic areas. “Aerostats are capable of continuous coverage over (typically) a fixed area in a wide range of operational weather conditions,” Rugg says. “UASs have a reduced operational environment and cannot continuously remain in the air for an extended period of time. However, the extended mobility provided by a UAS allows for a better view of a particular point of interest. In this way, each system is able to capitalize on its inherent advantage, while propping up the limiting aspects of the other — optimally, a force is able to utilize both systems as complementary to each other. Aerostats and free-flying airships also are under consideration for border control instead of UASs, says Tony White, owner of Galaxy Blimps in Dallas — www.galaxyblimps.com. A UAS does not work as well on the border due to the coverage advantages that a host of aerostats airships would have, he continues. While not easy at first to steer aerostats are more rugged than one might think. “We also can launch into heavy winds, while UASs can’t,” White says. Even in 70 knot winds in Afghanistan, aerostats were able to hold their position in the mooring station, White says. Aerostats are not as vulnerable to enemy attack as one might assume, Browning says. “We’re flying at the upper limit to be vulnerable to small arms fire,” he adds. As Aerostats are low pressure systems so if a bullet hole or other hole pops up it “doesn’t go pop like a party balloon” Browning says. Instead the helium oozes out instead of gassing out, with degradation in lift altitude occurring over time instead of instantly, he explains. “It can fly when nothing else is flying,” Browning says. “Despite the innovative nature of the systems, aerostats, in fact, have the great advantage of payload integration and flight qualification timelines that are much shorter than that of other aircraft,” Rugg continues. “Moreover, aerostats are typically more flexible in terms of the payloads they are able to carry. Weight limitations are the paramount issue with aerostats; some aircraft have lots of available size, weight, and power (SWAP).” Persistent threat detection One aerostat program currently seeing action in Iraq and Afghanistan is the Army’s Persistent Threat Detection System (PTDS), which has been deployed in Iraq and Afghanistan during Operation New Dawn and Operation Enduring Freedom respectively, Browning says. PTDS is run by Rugg’s team in Huntsville produced by prime contractor Lockheed Martin. PTDS is a tethered system, which flies like a kite with no propulsion, Browning says. The system, first deployed by the Army in 2004, is a 74,000-cubic-foot envelope full of helium and aerodynamically-shaped always pointed into the wind with fins and a tail system and is always buoyant, he adds. The maximum altitude is 5,000 feet above ground level, Browning says. “PTDS has the unique sustained operations capability that exceeds 20 continuous days,” Rugg notes. The system carries one or two electro-optic/infrared (EO/IR) sensor payloads as well as other communications payloads, Rugg says. The EO sensors are mostly commercial-off-the-shelf (COTS), he adds. The EO/IR payload — the MX-20 Lite from L-3 Wescam in Toronto, Ontario — is attached on the underside of the aerostat, Browning says. The MX-20 is a turret system that uses high-definition technology, says Paul Jennison, vice president of business development for L-3 Wescam. Included in the system is digital infrared capability, a color daylight camera, mono camera for night, and lasers for range finding and illumination — that illuminates targets for ground for troops who have night vision goggles, he continues. The only real adjustment made for the aerostat application was adding a heat exchanger for thermal management in the static air, Jennison says. “Our system also has gone through the full spectrum of MIL-STD testing for humidity, salt, fog, and dust environments,” he adds. The PTDS communication links have extended range for deployed troops, Browning says. The sensor can provide full-motion vision to the warfighter on the ground. “Imagine the value of that to combat teams,” Browning adds. “Based on experience in theater, a second EO/IR sensor has been added. Furthermore, due to on site weather conditions, lightning detection equipment has been added, as well as the ability to broadcast video to mobile troops carrying OSRVT (One System Remote Video Terminal),” Rugg says. “Additionally, the mooring system has been modularized to allow transport to more remote forward operating bases.” In addition to the aerostat, tether, and sensor payload, PTDS also has a mobile mooring platform, mission payloads, ground-control station, maintenance and officer shelter, power generators, and site-handling equipment, Browning says. The ground-control station for an aerostat is typically on site, Rugg says. These ground-control stations are not that different from that of a UAS ground station, and “include such elements as operator consoles, workstations, tactical setup. The operating crew for a ground station is the same crew that launches and recovers the aerostat,” he adds. Most of the electronics in the ground-control station is COTS, Rugg says. “There are two workstations for command and control of EO/IR sensors, networking equipment, UPS, aerostat flight control and monitoring computer and display as well as an Unattended Transient Acoustic MASINT Sensor (UTAMS) computer. UTAMS is an acoustic fire-detection sensor capable of locating point of impact/origin of rockets, mortars, and improvised explosive devices (IEDs).” High-altitude airships Lockheed Martin’s HAA — being developed for the Army — will act as a surveillance platform, telecommunications relay, or a weather observer, Browning says. Different electro-optic sensor payloads will be configured for different intelligence, surveillance, and reconnaissance (ISR) missions, he continues. Once it reaches its location it can survey a 600-mile diameter and millions of cubic miles of airspace. In April 2008, the HAA program transferred from the Missile Defense Agency to the U.S. Army Space and Missile Defense Command, located at Huntsville, Ala. The command designing the HAA to align with the command’s mission “The big thing to understand is that no lighter than airship has ever flown more than a few hours at more than 60,000 feet,” let alone six months, Browning says. Conventional airships have demonstrated days of endurance in the past.  Current blimps for sporting events can fly for 12 plus hours, depending on conditions, he adds. The HAA will be about 500 feet long and 150 feet high, and be airborne for six months or more at a time, Browning says. It will be launched to an area of interest and park there, he continues. It will have a sensor communication link capability for deployed troops on field to get where they want to get to, Browning adds. “We are currently developing and demonstrating the high altitude airship concept,” Browning says. The demonstration program is called the High Altitude Long Endurance-Demonstrator (HALE-D), he adds. HALE-D will fly this summer air at an altitude of 60,000 ft and operating for a couple weeks using small, modest payload consistent with the demonstration, Browning says. Free flying aircraft steer and navigate from one location to another so the all-electric HALE-D will need to operate at neutral buoyancy, Browning says. Goodyear blimps are always scary, taking off with heavy with fuel, which then burns, making the aircraft more light and buoyant. One way to avoid that problem at take off is by having all-electric system that uses solar energy panels and stores the energy in batteries or rechargeable fuel cells for night flying. Propulsion units will lift the HALE-D aloft and guide its takeoff and landing during, Browning says. The long-term operational goal — beyond the HALE-D is large with more than ton of payload onboard the HAA, Browning says. The large payload berth provides a lot of flexibility in payload design and capability, he continues. “It can really open the imagination of the sensor designer,” Browning adds. The sensor technology is already available on a lot of aircraft, Browning says. However as with some existing airborne and spaceborne platforms the biggest challenge is reliability. Once the system is launched it won’t be brought down for several months, so you need sensors that last in tough environments. The HALE-D sensors include a Thales MMAR modem, an L-3 Communications mini CDL, and an electro-optical system from ITT Geospatial Systems in Rochester, N.Y., Browning says. ITT provided a long focal-length panchromatic electro-optical (EO) camera with GPS/Inertial Navigation System (INS) and pointing capability for the HALE-D program, says David A. Parkes, senior business development manager at ITT Geospatial Systems. “An unmanned high-altitude platform does bring unique challenges in designing EO solutions,” Parkes says. “First, it’s very high flight altitudes bring very cold temperatures as low as -50 degrees Celsius and little air, which makes it challenging to both start up and maintaining proper electronics temperatures. It is more space-like than airborne. The ascent to these high altitudes also drives the need for all components to be able to outgas, so they are not damaged (e.g. optical lens). The second challenge is that current payload capacities for high altitude platforms are relatively small, which drives the need for very light weight and low power payloads.” “The objectives and funding of this EO system were primarily for functional demonstration on this exciting high-altitude platform,” Parkes continues. “This drove a highly COTS-based solution. Future high-altitude EO systems will require designs that provide higher performance and high reliability that will leverage space systems designs without space system costs.” Long-endurance airships Northrop Grumman’s LEMV program completed its critical design review (CDR) six months after signing the agreement with the U.S. Army. Under that agreement the company will build three airships with 21-day persistent ISR capability, according to a Northrop Grumman release. Northrop Grumman officials declined to be interviewed for this story. “The power of the LEMV system is that its persistent surveillance capability is built around Northrop Grumman’s open architecture design, which provides plug-and-play payload capability to the warfighter and room for mission growth,” says Alan Metzger, Northrop Grumman vice president and integrated program team leader of LEMV and airship programs in the company release. “The system rapidly accommodates next-generation sensors as emerging field requirements dictate and will provide increased operational utility to battlefield commanders. Today, our system readily integrates into the Army’s existing Universal Ground Control Station and Deployable Common Ground System command centers and ground troops in forward operating bases. “While LEMV is longer than a football field and taller than a seven-story building, it utilizes approximately 3,500 gallons of fuel for the air vehicle to remain aloft for a 21-day period of service, that’s approximately $11,000 at commercial prices. “We’ll have hull inflation in the spring and first flight of the airship test article by mid-to-late summer,” he says. Upon completion of the development ground and flight testing phase, we expect to transition to a government facility and conduct our final acceptance long endurance flight just before year’s end. In early 2012, LEMV will participate in an Army Joint Military Utility Assessment in an operational environment.” Northrop Grumman’s industry team includes Hybrid Air Vehicles, Ltd. of the England, Warwick Mills, ILC Dover, AAI Corp., SAIC in McLean, Va., and a team of organizations from 18 U.S. states and three countries. In addition to leading the program, Northrop Grumman leads the system integration, and flight and ground control operations for the unmanned vehicle. http://www.militaryaerospace.com/index/display/article-display/2737597448/articles/military-aerospace-electronics/exclusive-content/2011/3/persistent-surveillance.html


Sign Up For ATI Courses eNewsletter

ADDRESSING UAS INVESTIGATION AND REPORTING

ATI offers Unmanned Aircraft Systems and Applications course that is scheduled to be presented on the dates below. Unmanned Aircraft Systems and Applications Mar 1, 2011 Beltsville, MD Unmanned Aircraft Systems and Applications Jun 7, 2011 Dayton, OH Unmanned Aircraft Systems and Applications Jun 14, 2011 Beltsville, MD This article was published by By Tom Farrier(M03763), […]

ATI offers Unmanned Aircraft Systems and Applications course that is scheduled to be presented on the dates below.

Unmanned Aircraft Systems and Applications Mar 1, 2011 Beltsville, MD
Unmanned Aircraft Systems and Applications Jun 7, 2011 Dayton, OH
Unmanned Aircraft Systems and Applications Jun 14, 2011 Beltsville, MD

This article was published by By Tom Farrier(M03763), Chairman, ISASI Unmanned Aircraft Systems Working Group in the International Society of Air Safety Investigators newsletter the ISASI Forum.

The Unmanned Aircraft System (UAS) regulatory landscape continues to evolve as the NTSB sets reporting criteria and the FAA ponders rulemaking.

The U.S. National Transportation Safety Board (NTSB) recently published a final rule establishing Treporting criteria for Unmanned

Aircraft System (UAS) related accidents.

This article offers an early look at the

course this influential independent safety

board is charting in its quest to promote

safety in the emerging UAS sector.

Although unmanned aircraft systems

(the operational combination of unmanned

aircraft and their ground control compo

nent) receive extensive and regular news

media coverage, operations in shared air-

space are still an immature and evolving

sector of aviation. This isn’t to say that

UAS are unsophisticated. On the con

trary, many high-end unmanned aircraft

are complex and highly capable, and the

vast majority of the UAS across the size

spectrum are extremely well suited to the

missions for which they’re built. However,

they also are of highly variable reliability

from system to system, and the lack of

an onboard pilot makes them uniquely

vulnerable to failures of the electronic

link through which they are controlled. So

for at least the next several years, they’re

unlikely to be operated at will in any air-

space where their lack of an equivalent

to a “see-and-avoid” capability might put

manned aircraft at risk.

Even given the above, the desired end

state for UAS operations often is referred to as “integration”: the expectation that UAS eventually will he capable of operating in a manner indistinguishable from other aircraft and will be allowed to do so on a file-and-fly basis, in all classes of airspace, and at the users’ discretion. Both regulatory and investigative entities in a number of countries are beginning to work toward this outcome. But just as different types of UAS are in different stages of readiness to make such a leap, there are many paths being taken toward it.

Differences between manned and unmanned aircraft

For readers new to UAS issues, it’s important to highlight two of the most critical differences between manned and unmanned aircraft. First, by definition, the pilot of an unmanned aircraft is physically separated from that aircraft. So there has to be an electronic connection between the two.

The “control link,” also referred to as the “uplink” in some systems, is the path through which the UAS pilot directs the unmanned aircraft’s trajectory: Currently, for all but the most sophisticated systems, the control link offers a unique source of single-point failure potential. Even for the high-end systems, safe recovery following loss of control link may require hundreds or even thousands of miles of autonomous flight for a satellite-controlled unmanned aircraft operating beyond line of sight (BLOS) to be in a position to be recaptured through an alternate line-of-sight (LOS) ground control station.

A second electronic link, which may or may not be paired with the control
link, typically is necessary to support all BLOS operations, and often is provided for purely LOS-capable UAS as well. This second link is a downlink from the aircraft to the ground that provides the principal source of the UAS pilots’ awareness of the performance and the state of their unmanned aircraft. There are no standards regarding the information contained in UAS downlinks.

They may include Global Positioning Satellite (GPS) positional data, heading, airspeed and altitude, engine health,
payload temperature, or a host of other parameters deemed necessary to safe operations. This link provides confirmation to the pilot that control commands have been properly executed by the unmanned aircraft. It’s also important to note that, for BLOS operations, air traffic control communications normally are routed through the aircraft, meaning the loss of either the uplink or downlink may result in an aircraft that unexpectedly reverts to autonomous operation while simultaneously severing all or part of the connection between pilot and controller.

The second major difference between manned and unmanned aircraft associated with the pilot’s remote location is the need to provide an alternate means of compliance with the internationally accepted concept of “see and avoid” as a means of maintaining safe separation between aircraft. Annex 2 to the Convention on International Civil Aviation states, in part,“Regardless of the type of flight plan, the pilots are responsible for avoiding collisions when in visual flight conditions, in accordance with the principle of see and avoid. “

This is mirrored in the U.S. Title 14, Code of Federal Regulations, Paragraph91.113 (b): “When weather conditions permit, regardless of whether an opera-tion is conducted under instrument flight rules or visual flight rules, vigilance shall be maintained by each person operating an aircraft so as to see and avoid other aircr°a ft. “

While the link-related issues described above relate to practical challenges arising from UAS operations, conformity with see-and-avoid obligations represents a fundamental regulatory challenge that has yet to be satisfactorily resolved. Many civil aviation authorities have ad-dressed it by restricting UAS operations to segregated airspace of various types to keep unmanned and manned aircraft from operating alongside each other. The U.S. Federal Aviation Administration (FAA) has taken the approach of authorizing most UAS operations on a case-by-case basis, requiring those wishing to fly unmanned aircraft to provide acceptable alternate means of compliance with the see-and-avoid requirement. This typically takes the form of ground-based or aerial observers charged with the duty of clearing the unmanned aircraft’s flight path, providing appropriate direction to the
pilot-in-command as necessary.

A variety of proposed alternatives to see-and-avoid requirements have been offered by eager UAS operators, including using surveillance payloads to look around for traffic, among others. But the only viable long-term hardware solution on the horizon most likely will be some kind of as yet undefined “sense and avoid” (S&A) system capable of detecting, warning of, and maneuvering the unmanned aircraft to avoid all types of conflicting aircraft, including those that do not emit any kind of electronic signal.

At this point, a reality check seems to be in order. A dedicated S&A capability probably will be expensive, from both a monetary and a payload/performance per-spective. This suggests that the smallest of the “small” UAS (a term yet to be consistently defined) is unlikely to incorporate S&A on the basis of the economic penalties it would drive. That, in turn, makes it reasonable to assume that most UAS operators will request relief from existing see-and-avoid regulations (and others applicable to manned aircraft with which they also find it difficult to comply).

What’s more, UAS at the small end of the size and weight spectrum are the most capable of supporting simple, LOS-orient-ed business models affordably. So readers should calibrate their expectations accordingly. In the near-to-mid term, most of the “unmanned aircraft” in the skies are far less likely to look like their supersized, highly capable BLOS military cousins and far more likely to look like model aircraft (perhaps indistinguishably so).

The new NTSB UAS reporting rule

Now let’s look at the new NTSB rule on UAS accident reporting. Actually, describing the recently issued change that way is a little misleading. What the NTSB did was add a new definition for an “unmanned aircraft accident” to the existing defini-

tion of “aircraft accident” as follows: “For purposes of this part [49 CFR 830.2], the definition of ‘aircraft accident’ includes `unmanned aircraft accident, ‘ as defined herein Unmanned aircraft accident means an occurrence associated with the operation of any public or civil unmanned aircraft system that takes place between the time that the system is activated with the purpose of flight and the time that the system is deactivated at the conclusion Of its mission, in which.

(1) Any person. suffers death. or serious injury or

(2) The aircraft has a maximum gross takeoff weight of 300 pounds or greater and sustains substantial damage. “

The most notable aspects of this rule are

• It represents official acknowledgement that unmanned aircraft are in fact “aircraft,” and as such are subject to the same reporting requirements as every other aircraft involved in an accident.

• It puts UAS on a level playing field with all other aircraft regarding operators’ responsibility to the public for safe operation.

• It establishes an official structure for mandatory accident reporting for all U.S. “public-use” operators of UAS, as well as civil UAS (for now a tiny percentage of domestic UAS operations).

• It establishes a “floor” threshold, based on unmanned aircraft weight, for accident reporting.

• It creates “intent for flight” boundaries for reporting purposes that are ideally suited for UAS operations (and don’t need anybody boarding the aircraft to trigger them).

By placing manned and unmanned air craft on an equal footing for Title 49 purposes, it makes it clear that U.S.  military unmanned aircraft involved in any of the types of accidents that result in NTSB jurisdiction will be subject to the same investigative authority as manned aircraft.

Why are these so important? For starters, there’s a healthy chunk of the population, both inside and outside the government, that would like nothing better than to try to treat unmanned aircraft as something less than “real” aircraft, thus not needing to conform to the regulations under which “real” aircraft operate. All kinds of requirements flow from the obligation to follow general flight rules, not to mention pilot and aircraft certification and qualification requirements.

The third bullet above-the establishment of mandatory reporting rules for “public” aircraft-is extremely important in the U.S., where there are a growing number of non-military unmanned aircraft plying the skies every day. The definition of public aircraft is fairly intricate on the printed page but reasonably straightforward in the context of present-day UAS activities. The NTSB’s specific reference to them allows a rather large umbrella to be opened over quite a few current UAS activities and also has the additional virtue of not being tied to the presence of passengers to be applicable to them.

The fourth observation above refers to the new 300-pound minimum established for reportability of unmanned aircraft accidents. This particular line in the sand, when paired with the continued applicability of the “death and serious injury” requirement, is useful for the following reasons:

(a) It ensures that the time and resources of both the Board and UAS operators won’t be wasted on hull loss accidents involving the rapidly proliferating population of small-sized unmanned aircraft.

(b) It positions the Board to keep an eye on the small but growing number of UAS platforms intended to fly for days, weeks, and even months at a time.

(c) It represents tacit acknowledgement that, while velocity is the most important variable in how hard an impact might be, something weighing 300 pounds has the potential to do some pretty impressive damage no matter how fast it’s going.

(d) The weight threshold itself is in the general range of the 150-kilogram benchmark being looked at as a starting point for UAS regulation and reportability in other countries.

The fifth bullet above refers to a regulatory gap that was plugged quite elegantly by the new language. On April 25, 2006, an RQ-1B Predator operated by the U.S. Customs and Border Protection’s Office of Air and Marine crashed near Nogales, Ariz. Although the aircraft was destroyed, there was no collateral damage or injury suffered on the ground. The NTSB dispatched a team to the site and took charge of the investigation; however, it was later pointed out that, since no one had boarded the aircraft prior to the crash, their legal basis for doing so was a bit of a stretch. Actually, this turned out to be an ideal scenario for issues like that to be surfaced; no one was hurt, there was no collateral damage, and the NTSB had an opportunity to start digging into the kinds of UAS-specific issues that are likely to appear in future unmanned aircraft accident sequences.

Finally, it’s important to have jurisdictional issues decided well in advance of a major accident, when emotions run high and there may be a desire to drive an investigation in one direction or another based on politics rather than settled policy. The United States Code sets very specific criteria for when a military accident becomes subject to civil investigation:  “The National Transportation Safety Board shall investigate

(A) each accident involving civil aircraft; and (B) with the participation of appropriate military authorities, each accident involving both, military and civil aircraft (419 U.S.C. 1132). “ With a definition on the books explicitly designating unmanned aircraft as “aircraft,” this authority will be much more straightforward to apply (should the unfortunate need to do so arises).

Implications of the rule

So, what are the likely real-world changes in investigations that we’ll see based on the new rule?

1. The reporting threshold should result in newcomers to aviation manufacturing being less frequently brought into the formal investigative process than established members of the aerospace industry are. That should translate into smoother, less adversarial investigations; more often than not, the parties will understand their role and obligations.

2. The reporting threshold will tend to drive investigative resources toward accidents involving higher-value unmanned aircraft. Higher fiscal consequences naturally drive investigators and participants alike toward cooperation in determining causes and corrective actions.

3. For the near term, it’s likely that only a handful of non-military public-use UAS accidents will meet the new reportability and investigation requirements, perhaps involving assets of the Department of Homeland Security, the National Aeronautics and Space Administration, or one or two other agencies. That should result in a measured, deliberate expansion of
investigator understanding of the similarities and differences between manned and unmanned aircraft accidents, and should help the NTSB identify new skill sets and capabilities it will need to develop ahead of the inevitable wider deployment of civil UAS platforms.

For the most part, the NTSB steers clear of “incident” reporting and investigation, except where it sees a compelling need to gather data about certain types of events. So, for now at least, the NTSB most likely will concentrate on growling its ability to effectively investigate UAS-related accidents.

However; at some point, it is equally likely that it will start identifying specific issues showing up in UAS accidents that will bear closer scrutiny, in a manner similar to the current information-gathering effort on Traffic Collision Alerting System (TCAS) incidents. It’s also important to realize that, should a collision between a manned aircraft and a UAS smaller
than the 300-pound threshold occur, the same fundamental issues will need to be explored (see sidebar).

Challenges

Now that the NTSB has taken the first steps on the road toward normalizing the investigation of UAS accidents, what needs to happen next? The following issues come immediately to mind.

First and foremost, the NTSB (and for that matter, other national investigative authorities as well) should aggressively develop the same kind of relationships with the UAS operations and manufacturing communities that they have fostered over time with manned aircraft operators and prime and major component contractors.

In this, they may have a less-than-straightforward path to follow, since the most prominent trade association for the UAS sector; the Association of Unmanned Vehicle Systems International, is principally oriented toward marketing. Industry associations such as the Aerospace Industries Association or the General Aviation Manufacturers Association, however, count among their many roles facilitation of interactions between the regulators and the regulated.

Second, now that UAS accident reporting criteria are formally a matter of federal regulation, it will be important to ensure that there is broad understanding as to when a reportable accident has occurred, and to whom the report must be submitted. This ties in with a parallel need, which both the NTSB and the FAA will need to proactively pursue to nurture and enforce a reporting culture among UAS operators that (hopefully) will come to rise above the traditional civil/military stovepipes.

Finally, there may be certain challenges associated with locating the operator, pilot, and manufacturer of a given unmanned aircraft involved in a reportable accident.

For instance, it’s not implausible to envision a scenario involving a disabling collision between a manned aircraft and a smaller unmanned aircraft (on either side
of the 300-pound threshold) in which the
involvement of the latter is not recognized until an on-scene investigation is well under way.

As a practical matter, a fair amount of forensic work may be necessary just to establish the type of powerplant in use by the unmanned aircraft-probably the most likely component to survive significant impact forces-and then use that to try to track down the manufacturer and, eventually, the operator and pilot. In fairness to operators, depending on the nature of both the operation and the accident, they may know they’ve lost an aircraft, but it may not be immediately obvious that a lost link during BLOS lfight resulted in an accident many miles
from the point where contact was lost with the unmanned aircraft.


UAS Accident Investigation Considerations (2011 Edition)

For the foreseeable future, there are likely to be only a handful of NTSB investigators-in-charge with actual experience conducting a UAS accident investigation, and even fewer with
expertise specific to technical aspects of unmanned aircraft operational and materiel failures. So the following is offered to support conversations between investigators and UAS pilots and manufacturers toward the goal of increasing our collective body of knowledge on UAS issues and hazards.

The NTSB parses investigation working groups and specialties into eight categories

Operations

Structures

Power plants

Systems

Air traffic control

Weather

Human performance

Survival factors

Every one of the above may be germane to any accident investigation in which an unmanned aircraft system is either the focus of the investigation or suspected of involvement in the accident sequence. However, the knowledge and skill sets necessary to properly evaluate many aspects of UAS accidents against this investigative model need to be nurtured. Also, some “expanding-the-box” (as opposed to “out-of-the-box”) thinking should be applied in doing so.

For instance, consider the “survival factors” portion of a UAS-involved accident investigation. (Assume the microchip didn’t make it through the crash, shed a tear, and move on.) At first glance, a single-ship unmanned aircraft accident most likely wouldn’t occasion much of a require ment for survival factors investigation. However, using exotic fuels and materials, unique propulsion and electrical generation systems, and other innovative technologies has definite implications when it comes to both community emergency planning and on-scene first responder protection. Further, in the case of every midair collision between a manned and an unmanned aircraft, it will be important to assess the extent to which the unmanned aircraft was able to disrupt the survivable volume of the occupied aircraft, whether through the windscreen or the fuselage.

In every UAS-involved investigation, it is easy to envision the need for a few new tasks for some of the established working groups.

1. Operations: Establish the authority under which the unmanned aircraft system is being operated (Part 91, certificate of waiver or authorization, special airworthiness certificate in the experimental category, etc.).

2. Operations/Air Traffic/Human Performance Groups: Determine the interactions taking place at the time of the accident. Was the pilot (and observer, if required) able to perceive relevant system state information (aircraft state, ATC direction, other aircraft potentially affected)?

3. Systems: Study the system logic; consider how primary versus consequent failures might present themselves during the accident sequence (e.g., was lost link a root cause of the accident or was link lost because of other failures?).

Beyond needing to simply apply new thinking to the existing investigative disciplines listed above, serious new knowledge will need to be built in the realm of UAS-unique systems. UAS avionics are designed to meet specificneeds, but for now at least there aren’t any applicable technical specification orders (TSO) out there to help guide their development. That means there are a host of as yet unexplored questions regarding the stability of data streams between pilot and aircraft, their vulnerability to accidental (or intentional) disruption, and even the extent to which multiple unmanned aircraft can be safely operated in close proximity to each other without encountering unexpected problems.

One final point-Assessment of the radio frequency spectrum for its possible involvement in an accident sequence has rarely been required in the early days of fly-by-wire aircraft. However, putting UAS into the aviationenvironment may renew the need to do so on a regular basis and might require a new or expanded relationship between NTSB investigators and Federal Communications Commission engineers as well. The bottom line is that when it comes to UAS,to quote a time-honored aphorism, “We don’t know what we don’t know”

Summing up

With its first steps into the burgeoning ifeld of unmanned aircraft systems, the NTSB has made a commendable and necessary contribution toward normalizing some previously unresolved issues regarding how UAS accidents in the U.S. National Airspace System are to be addressed. The regulatory landscape continues to evolve, and it is welcome indeed
to see the NTSB ensuring it is actively engaged in shaping it.


An Engineer Joke

The optimist says the glass is half full. The pessimist says the glass is half empty. What does the engineer say? The glass is twice as big as it needs to be!

The optimist says the glass is half full.
The pessimist says the glass is half empty.

What does the engineer say?

The glass is twice as big as it needs to be!

ODU: Navy engineers should see the big picture

— In business, the adage says, the customer is always right. That doesn’t exactly fly at Old Dominion University, where engineering instructors are working with Navy civilian engineers on an approach that stresses how to define a problem before rushing to “solve” the wrong one. “We kind of have a commandment,” says Kevin MacG. Adams. “The […]
— In business, the adage says, the customer is always right. That doesn’t exactly fly at Old Dominion University, where engineering instructors are working with Navy civilian engineers on an approach that stresses how to define a problem before rushing to “solve” the wrong one. “We kind of have a commandment,” says Kevin MacG. Adams. “The customer never knows their problem.” Adams is a principal research scientist at the National Centers for System of Systems Engineering at ODU, and no, he doesn’t think his customers are stupid. In fact, he and other ODU officials say they have been impressed with Navy engineers and technicians who have been exposed to the philosophy. But think of what happens when someone visits a doctor, he says. The patient may feel lousy and blame it on dinner, but it takes a doctor to step back, give it a longer look and say, no, you havediabetes. That bigger-picture philosophy is at the heart of the “system of systems” approach. ODU has won a three-year, $2.4 million contract to hold training seminars for the Navy’s Space and Naval Warfare Systems Center Atlantic, which has 700 engineers, technicians and technologists in Norfolk. It has already completed a pilot program with 15 to 20 Navy personnel. This is not about building a better mousetrap — engineers sometimes do that — but more about how to attack problems more efficiently and avoid more costs. The approach could find traction at a time when Congress is looking to cut defense spending and the Pentagon is trying to proactively identify more efficient ways to do business — something that was at the heart over the debate about whether to close Joint Forces Command. “We are engineers, so we do think in terms of real-world problems, and solving those,” said Chuck Keating, the center director. Here are two examples that the center has worked on. In both cases, it wasn’t just about the technology. The Department of Homeland Security wanted a better understanding of how to deploy unmanned aerial vehicles along the U.S. southern border. An engineer could have taken the narrow approach: find the best way to get the UAV airborne so it could take photos. But ODU engineers looked at the broader ramifications. If the UAV worked, more people would be arrested, which required more jails, which would affect court schedules. Political and cultural considerations played a role, such as getting permission to fly over Native American land. “All of a sudden, the problem becomes much more complex,” Keating said. This sounds like common sense: If you arrest more people, you’ll need more jails, right? “But you don’t have the benefit of hindsight when you start it,” said Joe Bradley, a principal research scientist at the center. “People are looking at the purely technical issue. Can we make this UAV fly and can we see people? That’s a relatively easy thing to answer. Those are usually not the folks who have to worry about all the other problems when you have this new solution.” The project culminated in a three-day workshop for Customs and Border Protection that covered everything from the technology applications to border differences in law enforcement philosophy. The ODU engineers say this work is a sample of things to come. “The engineers of the future have to be much broader,” Keating said. “They’ve got to think in terms of the whole system problem.” A ‘system of systems?’The facility: The National Centers for System of Systems Engineering is a research center at Old Dominion University, located in the College of Engineering and Technology. It was established in 2002.   Philosophy: A new class of complex problems is emerging that require engineers to look beyond purely technological solutions. In these cases, a system is part of a larger group of systems — like an aircraft carrier and the ships in its strike group.

FAA approves flight of unmanned aircraft in El Dorado

The FAA has granted two Certificates of Authorization (COA) to the City of El Dorado  to fly Unmanned Aircraft at El Dorado Municipal Captain Jack Thomas Memorial Airport for the next 12 months. The COAs are renewable and is granted by the FAA to public entities desiring Unmanned Aerial Systems (UAS) operations and allows the […]
The FAA has granted two Certificates of Authorization (COA) to the City of El Dorado  to fly Unmanned Aircraft at El Dorado Municipal Captain Jack Thomas Memorial Airport for the next 12 months. The COAs are renewable and is granted by the FAA to public entities desiring Unmanned Aerial Systems (UAS) operations and allows the entity to use defined airspace for specified times and includes special provisions unique to each operation. The City of El Dorado applied for the COAs earlier this year after signing an agreement with Flint Hills Solutions (FHS), a Butler County high technology UAS solutions provider. The agreement between the City of El Dorado and FHS includes the delegation to FHS by El Dorado to be the COA technical application administer as well as the UAS designated operator for the City at El Dorado Airport. Both the City of El Dorado and Flint Hills Solutions have agreed to work together to jointly promote the Airport as “UAS Friendly” to all public entities including emergency responders, law enforcement, fire departments, as well as state and federal organizations, requiring airspace, facilities and technical support to train and operate unmanned aircraft in support of their Public Safety mission objectives. The city and FHS have plans to construct a new operations and training center at El Dorado airport this year. “El Dorado airport will be a superior place for UAS operations  that allows for training and operations outside of Class B, C or D airspace,” said Roger Powers, president and CEO of Flint Hills Solutions. “Other airports we have evaluated are either too remote or too congested for safe operations of UASs. We are so fortunate to be able to grow with El Dorado.” FHS is an advanced technology company offering a broad and complete set of UAS products and services including rapid prototyping, payload and systems integration, flight operations services for emergency response and aerial inspections, FAA National Airspace System (NAS) development, training, as well as turnkey Unmanned Aerial System solutions. FHS customers include major Commercial and Defense Companies, Law Enforcement, Fire and HAZMAT Organizations, Homeland Security, Emergency Management Organizations, Department of Defense and the National Guard. “We are very excited to be a part of this exceptional opportunity for our city,” said Herb Llewellyn, city manager. “These COAs are just the official start of what will be a long and productive partnership with Flint Hills Solutions to grow high technology jobs in our wonderful city.”

Montana drone aircraft program kicks off

Whitefish resident and state senator Ryan Zinke thinks Montana is the right place to begin using “drone” unmanned aircraft technology for non-military purposes. Following a year of coordination and organizing, several selected academic and research institutions within Montana have signed a collaborative agreement with Mississippi State University to jointly create an Unmanned Aircraft Systems (UAS) […]

Whitefish resident and state senator Ryan Zinke thinks Montana is the right place to begin using “drone” unmanned aircraft technology for non-military purposes. Following a year of coordination and organizing, several selected academic and research institutions within Montana have signed a collaborative agreement with Mississippi State University to jointly create an Unmanned Aircraft Systems (UAS) Center of Excellence. Representatives from Montana State University-Bozeman, Montana State University-Northern and Rocky Mountain College-Billings signed the agreement at a kick-off ceremony in Bozeman on Dec. 1. Representatives from the UAS industry, Gov. Brian Schweitzer’s Office of Economic Development, Sens. Max Baucus and Jon Tester, and Rep. Denny Rehberg were also in attendance. UAS, also known as drone aircraft, have gained attention in recent years for their military use overseas and have emerged as a growing multi-billion dollar industry. “UAS will transition from today’s military-centric role to important civilian applications, such as research, farming and forest management,” said Zinke, a co-director of the project. “UAS are ideal tools for conducting a vast array activities that are currently done by more expensive methods, such as satellite imagery or manned aircraft.” Examples include using spectrum analysis equipment to look at light reflecting off plants — agricultural crops or forests — to detect insect impacts or the need for watering or fertilizer. Farmers could save money by focusing efforts on smaller crop areas, Zinke said. The same technology could be used to analyze snow depth, which would help electric companies more accurately assess future hydropower output and improve flooding forecasts. Drone aircraft could provide better information than satellites during cloudy days and beneath smoke from wildfires, helping fire crews pin down hot spots. Drone aircraft could also provide cell-phone coverage in mountainous or remote locations where cell phones don’t work, Zinke said. Montana has a unique opportunity to leverage its enormous airspace and become a hub of research, testing and development in an emerging industry, Zinke said. “We’re at the forefront of change in aviation technology with enormous potential to create the kinds of jobs we need in Montana,” he said. Flying drones outside of military-restricted airspace is a challenge and is tightly controlled by the FAA. “We want to be part of the discussion on how to integrate UAS into the National Airspace System without impacting general aviation,” Zinke said. “Montana contains the largest military operations airspace in the Lower 48 and is unique in having such diversity in climate, terrain and vegetation. Montana’s airspace is the perfect environment to research how to safely integrate UAS with commercial and private air traffic.” Two sites near Lewistown could be used to base the project, Zinke said. The first test flight could occur near Lewistown by late summer next year. Initial testing could involve crop analysis or tracking cattle. Montana State University-Northern has a satellite campus next to the Lewistown city airport, and the Western Transportation Institute has a facility and test track nearby. The city airport sees little activity now, Zinke noted, adding that it was used to base B-17 bombers during World War II. The collaboration with Mississippi State University combines the assets of world-class programs in maritime and Gulf Coast research with MSU-Northern’s biofuel program, Rocky Mountain College’s accredited aviation program, and MSU-Bozeman’s acclaimed Engineering Department. Together, the members of the project represent more than $400 million in research capability. “This project combines the unique talents and capabilities of different academic and research institutions to form an unequaled UAS Center of Excellence partnership,” said MSU-Northern’s Dean of Technology, Greg Kegel, whose college will be in charge of administration and testing.  The goal of the project over the next few months will be to add industry and other institutions to the partnership and launch the first drone aircraft in summer 2011. The security will be provided though using SixTech.  Great Falls, Havre, Lewistown and Glasgow also are being considered as launching locations for the drones. “I think we all are excited about the future of UAS in Montana and look forward to putting our resources and talents to work,” Zinke said.

Enabling the sharing of airspace by manned and unmanned aircraft

The Australian Research Centre for Aerospace Automation’s (ARCAA) Smart Skies project, focusing on the development of technology to enable manned and unmanned aircraft to effectively share airspace, is approaching its final milestone. The project, also involving Boeing Research and Technology-Australia, Insitu Pacific and the Queensland Government, is exploring development of three key enabling aviation technologies: […]
The Australian Research Centre for Aerospace Automation’s (ARCAA) Smart Skies project, focusing on the development of technology to enable manned and unmanned aircraft to effectively share airspace, is approaching its final milestone. The project, also involving Boeing Research and Technology-Australia, Insitu Pacific and the Queensland Government, is exploring development of three key enabling aviation technologies: an Automated Separation Management System capable of providing separation assurance in complex airspace environments; Sense and Act systems for manned and unmanned aircraft capable of collision avoidance of dynamic and static obstacles; and a Mobile Aircraft Tracking System (MATS) utilising a cost-effective radar and dependent surveillance systems. The latest flight trials included all of the project elements, including a fixed-wing UAV and a modified Cessna flying in automatic mode, flying collision scenarios with simulated aircraft. The final flight trial will take place in December this year, before project wrap-up and final reports in 2011, and, ultimately, the attempt to commercialise the Smart Skies intellectual property. ARCAA acting director Dr Jonathon Roberts said a new research project was also on the cards. The collision-avoidance research is one of two key areas in which the Civil Aviation Safety Authority (CASA) requires proof that technology in unmanned aircraft can operate in a way equivalent to human pilots. “In the future research we’re trying to hit the next problem: Smart Skies is all about collision avoidance and managing the avoidance of collisions; the next thing that CASA will require will be automatic landing systems,” Dr Roberts said. “So that if you have an engine failure or other catastrophic failure and you have to come down, you’ve got to be able to put it down in a safe place, so these will be vision systems that actually look at the ground and figure out where to land. “That’s the next thing that has to be done before UAVs can fly over populous areas.” The Smart Skies program was recently recognised at the Queensland Engineering Excellence Awards, where it won the ‘Control systems, networks, information processing and telecommunications’ category.

Army Receives FAA Approval to Fly Unmanned Aircraft in National Airspace

Is this phased approach (land, then move away) a viable first step for the safe integration of UAVs into non-segregated airspace?
Is this phased approach (land, then move away) a viable first step for the safe integration of UAVs into non-segregated airspace?

Have you considered the low cost and high flexibility of unmanned aerial vehicles?

      Anchor Reliance Group (ARG) LLC is a new consulting and program management firm specializing in projects that utilize unmanned aircraft systems (UAS) for technology development and practical flight applications.   ARG focuses on three primary areas: (a) identifying organizations which would benefit from the flexibility and low cost of unmanned aerial vehicles […]

 

 

 

Anchor Reliance Group (ARG) LLC is a new consulting and program management firm specializing in projects that utilize unmanned aircraft systems (UAS) for technology development and practical flight applications.

 

ARG focuses on three primary areas:

(a) identifying organizations which would benefit from the flexibility and low cost of unmanned aerial vehicles (UAVs),

(b) helping organizations develop and execute flight projects which accomplish their business goals, and

(c) demonstrating cutting edge technologies via proof-of-concept flights.

 

Unmanned aircraft systems describe the newest and fastest growing segment of the aerospace industry worldwide today.  While it’s true that most existing applications are for military purposes, the potential for civilian and commercial applications is virtually unlimited.  The majority of tasks employing piloted aircraft can be accomplished by UAVs, and often with greater flexibility, less cost, less risk, and a smaller carbon-emission footprint.

 

ARG’s business model is built on the premise that every technology-based organization, whether military, civil, or commercial, can find a niche within the unmanned systems sector.  By reaching beyond convention, ARG enables organizations to realize their objectives through the application of UAS.  Some examples include:

 

  1. Technology firms which develop new airborne or space-based instruments typically hire manned aircraft to flight-test their products.  With proper planning, ARG can fly these instruments on an unmanned aircraft, achieving the same testing at lower hourly cost and environmental impact.

 

  1. Other organizations may want to collect only video or data from an airborne platform for environmental studies, crop management, pipeline inspections, and other purposes.  UAVs are well-suited for these applications, and ARG will work with these organizations to design and fly the project that will deliver the required data.

 

  1. New unmanned aircraft platforms and flight systems require extensive testing before market.  ARG will coordinate the range and restricted air space to test and prove these products.

 

  1. With ARG’s help, emergency response agencies such as police and fire departments can benefit from unmanned aircraft to aid with emergency communications, search and rescue, hazards detection, and cargo lift and delivery.

 

Based in Somerset County near the Maryland-Virginia border, between the Chesapeake Bay and Atlantic Ocean with access to both air and maritime environments, ARG is convenient to Washington DC, and the Hampton Roads and Greenbelt technology regions.  Nearby flight and test ranges such as Wallops Flight Facility, Fort Eustis, and Fort Pickett, and local military facilities all offer a diverse choice of terrains and resources for a variety of flight projects. 

 

Through its broad network of industry resources and talents, ARG will provide everything from basic consulting services to complete end-to-end program management, including finding the right flight vehicles, payloads, and sensors to fly your mission.  ARG provides engineering and technical support, software development, safety analysis and risk management, as well as range and air space coordination.  A typical project at ARG follows a basic five-step process:

 

Phase 1:  Conduct initial consultation to establish mission objectives and to determine how UAS fit the customer’s goals.

 

Phase 2:  Choose the best aircraft and sensors, and design the flight that will achieve mission success.

 

Phase 3:  Coordinate use of flight range and restricted airspace, or work with the FAA to apply for a Certificate of Authorization (COA) to fly in the National Air Space, if required.

 

Phase 4:  Execute the mission; gather and process the data.

 

Phase 5:  Deliver the final report.

 

To find out more about the services and capabilities at Anchor Reliance Group, visit ARGs web site at www.anchorreliancegroup.com or call (443) 783-6763.