Space Mission Analysis & Design

Course length:

3 Days



Course dates

Interested in attending? Have a suggestion about running this course near you?
Register your interest now

Want to run this event on-site? Enquire about running this event in-house


This three-day class is intended for both students and professionals in astronautics and space science. It is appropriate for engineers, scientists, and managers trying to obtain the best mission possible within a limited budget and for students working on advanced design projects or just beginning in space systems engineering. It is the indispensable traveling companion for seasoned veterans or those just beginning to explore the highways and by-ways of space mission engineering.


What You Will Learn:

  • Conceptual mission design
  • Defining top-level mission requirements
  • Mission operational concepts
  • Mission operations analysis and design
  • Estimating space system costs
  • Spacecraft design development, verification and validation
  • System design review

Course Outline:

  1. The Space Missions Analysis and Design Process
  2. Mission Characterization
  3. Mission Evaluation
  4. Requirements Definition
  5. Space Mission Geometry
  6. Introduction to Astro-dynamics
  7. Orbit and Constellation Design
  8. The Space Environment and Survivability
  9. Space Payload Design and Sizing
  10. Spacecraft Design and Sizing
  11. Spacecraft Subsystems
  12. Space Manufacture and Test
  13. Communications Architecture
  14. Mission Operations
  15. Ground System Design and Sizing
  16. Spacecraft Computer Systems
  17. Space Propulsion Systems
  18. Launch Systems
  19. Space Manufacturing and Reliability
  20. Cost Modeling
  21. Limits on Mission Design
  22. Design of Low-Cost Spacecraft
  23. Applying Space Mission Analysis and Design


Edward L. Keith is a multi-discipline Launch Vehicle System Engineer, specializing in the integration of launch vehicle technology, design, and business strategies. He is currently conducting business case strategic analysis, risk reduction and modeling for the Boeing Space Launch Initiative Reusable Launch Vehicle team. For the past five years, Ed has supported the technical and business case efforts at Boeing to advance the state-of-the-art for reusable launch vehicles. Mr. Keith has designed complete rocket engines, rocket vehicles, small propulsion systems, and composite propellant tank systems, especially designed for low cost, as a propulsion and launch vehicle engineer. His travels have taken him to Russia, China, Australia and many other launch operation centers throughout the world. Mr. Keith has worked as a Systems Engineer for Rockwell International, on the Brillant Eyes Satellite Program and on the Space Shuttle Advanced Solid Rocket Motor project. Mr. Keith served for five years with Aerojet in Australia, evaluating all space mission operations that originated in the Eastern Hemisphere. Mr. Keith also served for five years on Launch Operations at Vandenberg AFB, California. Mr. Keith has written 18 papers on various aspects of Low Cost Space Transportation over the last decade.


Daniel J. Moser, Founder, President and Chief Technical Officer of an engineering consultant firm has a B.S. in Physics, and M.E. in Mechanical Engineering, University of Utah. Mr. Moser has been an engineer, innovator, and entrepreneur in the aerospace industry for over 35 years. Previously employed by Beal Aerospace Technologies (Director of Engineering), Raytheon-Electronic Systems (Chief Composites Engineer), ALCOA-FiberTek (Project Engineer), and EDO-Fiber Science (Project/Test Engineer), he has also founded and operated two composites-based businesses: Utah Rocketry (1993-1997), and Compositex, Inc. (2000-present). He has extensive experience in designing and developing launch vehicles, liquid rocket propulsion systems, ablatively-cooled thrust chambers/nozzles, filament-wound composite vessels (liquid propellant tanks, high-pressure gas storage vessels, solid rocket motorcases, and crash-worthy external aircraft fuel tanks), wings, control surfaces, fuselages, radomes, spars, missile tail fins, bulkheads, reentry heat shields, and landing gear. Compositex, Inc. customers include NASA-Marshall, NASA-Ames, NASA-Johnson, Air Force Research Laboratory, Johns Hopkins University-Applied Physics Laboratory, Air Launch LLC, Blue Origin, Virgin Galactic, KT Engineering, Rocketdyne, DARPA, Exxon-Mobil, Northrop Grumman, and Lockheed Martin.



REGISTRATION: There is no obligation or payment required to enter the Registration for an actively scheduled course. We understand that you may need approvals but please register as early as possible or contact us so we know of your interest in this course offering.

SCHEDULING: If this course is not on the current schedule of open enrollment courses and you are interested in attending this or another course as an open enrollment, please contact us at (410)956-8805 or Please indicate the course name, number of students who wish to participate. and a preferred time frame. ATI typically schedules open enrollment courses with a 3-5 month lead-time. To express your interest in an open enrollment course not on our current schedule, please email us at

For on-site pricing, you can use the request an on-site quote form, call us at (410)956-8805, or email us at