Spread The News

In radio communications, spread spectrum techniques are methods by which a signal generated with a particular bandwidth is spread in the frequency domain, resulting in a signal with a wider bandwidth.  So, why would a radio communications engineer want to do this?  There are actually many advantages to employing spread spectrum in your design.  I […]

In radio communications, spread spectrum techniques are methods by which a signal generated with a particular bandwidth is spread in the frequency domain, resulting in a signal with a wider bandwidth.  So, why would a radio communications engineer want to do this?  There are actually many advantages to employing spread spectrum in your design.  I will not even attempt to explain spread spectrum techniques in this blog, but if you want to learn more about these techniques, ATI can help.  So, what are the advantages, you ask?

Crosstalk interference is greatly attenuated due to the processing gain of the spread spectrum system.

Voice quality is improved due to less static noise.

Lower susceptibility to multipath fading.

Increased security since a PN sequence is used to either modulate the signal in the time domain, or select the carrier frequency.

More users can Coexist in the same frequency band

Longer operating distances since higher transmit power is allowed.

Signal is harder to detect by those who are not supposed to be detecting it.

Signal is harder to jam.

If these advantages sound like something you would like to achieve, consider learning more about Spread Spectrum techniques in radio communications by taking the ATI short course titled Wireless Communications and Spread Spectrum Design.  You can learn more about this course, and register for it here on the ATI Web Page. 

And as always, a complete list of ATI courses, and a schedule of upcoming offerings can be found here on the ATI home page.