ATI is pleased to offer a new course “Sonobuoy Technology for Air Anti-Submarine Warfare and Beyond.” This article introduces that course. Additionally, Mr. Seibert Murphy will be conducting a free-session on this topic. Details on that free session, and details on the full course can be found below.
Air Anti-Submarine Warfare (Air ASW) has played a pivotal role in naval operations for decades. It is a complex and ever-evolving field that combines cutting-edge technology with tactical prowess. In this course, we will learn about Air ASW by taking a journey through the history of sonobuoy technology, from its humble beginnings to its current state, and explore the many exciting prospects for its future.
What do you think of when you hear the word sonobuoy? Maybe you think “sonar-buoy” and you would not be too far from the truth because sonobuoy is a mashup of the two words. Thinking about sonobuoys used in Air ASW, we have to consider that not only do they play a vital role but they must be designed like other munitions to be handled, transported, stored, then launched from high altitude, survive impacting the ocean, and operate under demanding climate, extreme weather, and sea state conditions. All while being precise enough to detect submarines (and other undersea vehicles) that are trying to do their very best to remain undetectable. There is a lot going on inside the humble 4.875″ diameter, 36″ long sonobuoy.
Air ASW traces its roots back to World War I when aircraft were first used to search for submarines. Early attempts were rudimentary, with pilots relying on visual observations and basic weapons. However, these pioneering efforts set the stage for the development of more sophisticated ASW tactics and equipment.
The outbreak of World War II saw a rapid evolution in ASW. By 1942 allied forces had developed sonobuoy technology and sonar-equipped aircraft to detect submarines in undersea combat. Depth charges and torpedoes were also refined for aerial use. These advancements proved vital in the Battle of the Atlantic, where convoys depended on ASW to fend off German U-boats.
The Cold War brought further innovations in ASW technology. Aircraft like the P-3 Orion equipped with sonobuoys, advanced sonar signal processing systems, and magnetic anomaly detectors, greatly enhancing their submarine-hunting capabilities. Air ASW operations also played a significant role in the tense standoff between NATO and the Warsaw Pact.
Today, Air ASW remains a critical component of naval strategy. Modern aircraft like the P-8 Poseidon and helicopters such as the MH-60R Seahawk have taken ASW to new heights. These platforms employ cutting-edge sensors, including synthetic aperture radar and acoustic arrays, to detect and track submarines. Additionally, unmanned aerial vehicles (UAVs) are increasingly being used for ASW missions, providing enhanced flexibility and endurance.
The future of sonobuoy technologies holds exciting possibilities. Advancements in artificial intelligence and machine learning (AI/ML) will likely improve the success rate of submarine detection as well as environmental monitoring and management. Next generation sonobuoys, autonomous underwater vehicles (AUVs) and underwater drones will play a more prominent role in hunting submarines and exploring the challenging underwater environments. High performance embedded computing, along with cooperative and multi-sensor data fusion methods will revolutionize sonobuoy usage by enabling faster and more accurate data processing.
Sonobuoys and associated technologies have been around in popular media since the seventies. Some of the first examples are as props in shows like “Star Trek” and “Battle Star Galactica.” You may have seen the eight-sided tubes stacked as props in the shuttle bay or in engineering spaces. They were often painted silver or gold to give a futuristic look. Sonobuoys played supporting roles in “The Hunt for Red October”, “Crimson Tide”, “JAG” and “Hawaii-Five-O” to name a few. Unfortunately, sonobuoys are also used for sea air rescue or SAR missions. In those cases, specialized sonobuoys are used to listen for sounds of flight data recorder’s acoustic beacon, noise anomalies, or even voice communications. Recent examples of search and recovery using sonar and sonobuoy technologies include Malaysian Airlines Flight 370 (MH370) in 2014, and the OceanGate Titan submersible in June 2023.
Over the past 100 years, or so, Air ASW and sonobuoy technology has come a long way from its humble beginnings, evolving into a sophisticated and essential aspect of modern naval operations and ocean research. As technology continues to advance, the future of sonobuoys for Air ASW and beyond promises even greater capabilities. We’ll talk about an ever-changing world, where the keeping a watchful eye over the depths of our world’s oceans ensures a healthy food supply, environmental protection, freedom of navigation, safety and security of the seas, for years to come.
A one-hour, free webinar describing the ATI course “Sonobuoy Technology for Air Anti-Submarine Warfare and Beyond” will be conducted by the instructor on November 6. You can find more information on that free-session and register to attend by going here. The full 2-day course will be offered starting December 5. You can read more about the full course, and register to attend, by going here. Please consider one or both of these exciting possibilities.