Sonar and Target Motion Analysis Fundamentals is a course being offered by ATI starting on October 19.
Typically, the purpose of this blog is to share the real-world relevance of the material being taught in the class, and typically, there is a lot of real-world relevance to talk about. Unfortunately, in this case, there is not much real-world relevance to discuss.
So, if you are a submarine sonarman, or if you are an engineer developing tools for use by submarine sonarmen, then this is the course for you! You surely already understand the meaning and importance of Target Motion Analysis, and this class will offer insights that you may not have been exposed to in your Navy or workplace training.
For the rest of the world, since I can’t offer any real-world relevance, I will at least explain what Target Motion Analysis is, and why it is so critical to sonarmen.
Surface Ships use Radar in much the same way that Submarines use Sonar. One major difference between Surface Ships and Submarines is that stealth is critical to the submarine, and less important to the surface ship. So, submarines typically do not want to emit any energy from their ship, as that would be detectable by the adversary. As a result, while Surface Ship Radar actively emits energy, submarine sonar does not. Submarine Sonars act passively; it only listens to naturally occurring noise, it does not transmit any energy.
When a Surface Ship Radar emits a pulse and listens for a return, the radarman is able to pinpoint the precise location of the contact. Over time, he can examine the track of his contact, and use this information for tactical purposes. The process is fairly simple compared to what happens on a submarine.
When a submarine sonarman hears a contact using his passive sonar, he knows nothing more than the direction it is coming from. Over time, he can develop a time history of the direction to the contact, but that is not the same as a Target Track. The time history of target direction is of little use for tactical planners; they need to know the track of the contact, which includes the contacts range and direction of travel. In order to convert the time history of target direction into a usable contact track, the sonarman, or the sonarman’s computer programs, must execute “Target Motion Analysis”.
If you find this explanation interesting, or if it sounds like something that you may be able to apply to your work, please consider joining us for this class. You can learn more about the class, and register for it here.
A complete listing of our upcoming classes can be found here.
Lastly, a complete listing of all of the courses that ATI can offer upon request can be found here.