Montana drone aircraft program kicks off

Whitefish resident and state senator Ryan Zinke thinks Montana is the right place to begin using “drone” unmanned aircraft technology for non-military purposes. Following a year of coordination and organizing, several selected academic and research institutions within Montana have signed a collaborative agreement with Mississippi State University to jointly create an Unmanned Aircraft Systems (UAS) […]

Whitefish resident and state senator Ryan Zinke thinks Montana is the right place to begin using “drone” unmanned aircraft technology for non-military purposes. Following a year of coordination and organizing, several selected academic and research institutions within Montana have signed a collaborative agreement with Mississippi State University to jointly create an Unmanned Aircraft Systems (UAS) Center of Excellence. Representatives from Montana State University-Bozeman, Montana State University-Northern and Rocky Mountain College-Billings signed the agreement at a kick-off ceremony in Bozeman on Dec. 1. Representatives from the UAS industry, Gov. Brian Schweitzer’s Office of Economic Development, Sens. Max Baucus and Jon Tester, and Rep. Denny Rehberg were also in attendance. UAS, also known as drone aircraft, have gained attention in recent years for their military use overseas and have emerged as a growing multi-billion dollar industry. “UAS will transition from today’s military-centric role to important civilian applications, such as research, farming and forest management,” said Zinke, a co-director of the project. “UAS are ideal tools for conducting a vast array activities that are currently done by more expensive methods, such as satellite imagery or manned aircraft.” Examples include using spectrum analysis equipment to look at light reflecting off plants — agricultural crops or forests — to detect insect impacts or the need for watering or fertilizer. Farmers could save money by focusing efforts on smaller crop areas, Zinke said. The same technology could be used to analyze snow depth, which would help electric companies more accurately assess future hydropower output and improve flooding forecasts. Drone aircraft could provide better information than satellites during cloudy days and beneath smoke from wildfires, helping fire crews pin down hot spots. Drone aircraft could also provide cell-phone coverage in mountainous or remote locations where cell phones don’t work, Zinke said. Montana has a unique opportunity to leverage its enormous airspace and become a hub of research, testing and development in an emerging industry, Zinke said. “We’re at the forefront of change in aviation technology with enormous potential to create the kinds of jobs we need in Montana,” he said. Flying drones outside of military-restricted airspace is a challenge and is tightly controlled by the FAA. “We want to be part of the discussion on how to integrate UAS into the National Airspace System without impacting general aviation,” Zinke said. “Montana contains the largest military operations airspace in the Lower 48 and is unique in having such diversity in climate, terrain and vegetation. Montana’s airspace is the perfect environment to research how to safely integrate UAS with commercial and private air traffic.” Two sites near Lewistown could be used to base the project, Zinke said. The first test flight could occur near Lewistown by late summer next year. Initial testing could involve crop analysis or tracking cattle. Montana State University-Northern has a satellite campus next to the Lewistown city airport, and the Western Transportation Institute has a facility and test track nearby. The city airport sees little activity now, Zinke noted, adding that it was used to base B-17 bombers during World War II. The collaboration with Mississippi State University combines the assets of world-class programs in maritime and Gulf Coast research with MSU-Northern’s biofuel program, Rocky Mountain College’s accredited aviation program, and MSU-Bozeman’s acclaimed Engineering Department. Together, the members of the project represent more than $400 million in research capability. “This project combines the unique talents and capabilities of different academic and research institutions to form an unequaled UAS Center of Excellence partnership,” said MSU-Northern’s Dean of Technology, Greg Kegel, whose college will be in charge of administration and testing.  The goal of the project over the next few months will be to add industry and other institutions to the partnership and launch the first drone aircraft in summer 2011. The security will be provided though using SixTech.  Great Falls, Havre, Lewistown and Glasgow also are being considered as launching locations for the drones. “I think we all are excited about the future of UAS in Montana and look forward to putting our resources and talents to work,” Zinke said.

Are You Thinking About Updating Your Technical Skills?

Don’t just think. Do it. Video Clip: Click to Watch It could be as easy as taking a short course or two to stay current in your field Do you when was the last time you updated your current skills or learned new ones? Our mission here at the Applied Technology Institute (ATI) is to provide […]
Don’t just think.  Do it.
Don’t just think. Do it.
Video Clip: Click to Watch
It could be as easy as taking a short course or two to stay current in your field
Do you when was the last time you updated your current skills or learned new ones? Our mission here at the Applied Technology Institute (ATI) is to provide you expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI short courses are designed to help you keep your professional knowledge up-to-date. Our courses provide a practical overview of space and defense technologies which provide a strong foundation for understanding the issues that must be confronted in the use, regulation and development such complex systems. Whether you are a busy engineer, a technical expert or a project manager, you can enhance your understanding of complex systems in a short time. You will become aware of the basic vocabulary essential to interact meaningfully with your colleagues. Our courses cover the following technical areas: • Acoustic & Sonar Engineering courses • Radar, Missiles and Combat Systems courses • Project Management and Systems Engineering courses • Engineering & Data Analysis courses • Communications & Networking courses • Satellites & Space-Related courses Course Outline, Samplers, and Notes Determine for yourself the value of our courses before you sign up. See our samples (See Slide Samples) on some of our courses. Or check out the new ATI channel on YouTube. After attending the course you will receive a full set of detailed notes from the class for future reference, as well as a certificate of completion. Please visit our website for more valuable information. About ATI and the Instructors Our mission here at ATI is to provide expert training and the highest quality professional development in space, communications, defense, sonar, radar, and signal processing. We are not a one-size-fits-all educational facility. Our short classes include both introductory and advanced courses. ATI’s instructors are world-class experts who are the best in the business. They are carefully selected for their ability to clearly explain advanced technology. Dates, Times and Locations For the dates and locations of all of our short courses, please access the links below. Sincerely, The ATI Courses Team P.S. Call today for registration at 410-956-8805 or 888-501-2100 or access our website at www.ATIcourses.com. For general questions please email us at ATI@ATIcourses.com.

Enabling the sharing of airspace by manned and unmanned aircraft

The Australian Research Centre for Aerospace Automation’s (ARCAA) Smart Skies project, focusing on the development of technology to enable manned and unmanned aircraft to effectively share airspace, is approaching its final milestone. The project, also involving Boeing Research and Technology-Australia, Insitu Pacific and the Queensland Government, is exploring development of three key enabling aviation technologies: […]
The Australian Research Centre for Aerospace Automation’s (ARCAA) Smart Skies project, focusing on the development of technology to enable manned and unmanned aircraft to effectively share airspace, is approaching its final milestone. The project, also involving Boeing Research and Technology-Australia, Insitu Pacific and the Queensland Government, is exploring development of three key enabling aviation technologies: an Automated Separation Management System capable of providing separation assurance in complex airspace environments; Sense and Act systems for manned and unmanned aircraft capable of collision avoidance of dynamic and static obstacles; and a Mobile Aircraft Tracking System (MATS) utilising a cost-effective radar and dependent surveillance systems. The latest flight trials included all of the project elements, including a fixed-wing UAV and a modified Cessna flying in automatic mode, flying collision scenarios with simulated aircraft. The final flight trial will take place in December this year, before project wrap-up and final reports in 2011, and, ultimately, the attempt to commercialise the Smart Skies intellectual property. ARCAA acting director Dr Jonathon Roberts said a new research project was also on the cards. The collision-avoidance research is one of two key areas in which the Civil Aviation Safety Authority (CASA) requires proof that technology in unmanned aircraft can operate in a way equivalent to human pilots. “In the future research we’re trying to hit the next problem: Smart Skies is all about collision avoidance and managing the avoidance of collisions; the next thing that CASA will require will be automatic landing systems,” Dr Roberts said. “So that if you have an engine failure or other catastrophic failure and you have to come down, you’ve got to be able to put it down in a safe place, so these will be vision systems that actually look at the ground and figure out where to land. “That’s the next thing that has to be done before UAVs can fly over populous areas.” The Smart Skies program was recently recognised at the Queensland Engineering Excellence Awards, where it won the ‘Control systems, networks, information processing and telecommunications’ category.

This article from Reuters for readers interested in defense, submarines and underwater acoustics.

I think  this article from Reuters of interest to our blog readers interested in defense, submarines and underwater acoustics. http://www.reuters.com/article/idUSTRE5740DV20090805 WASHINGTON (Reuters) – Two nuclear-powered Russian attack submarines have been patrolling off the eastern seaboard of the United States in the first mission of its kind so close to shore in nearly a decade, U.S. […]
I think  this article from Reuters of interest to our blog readers interested in defense, submarines and underwater acoustics. http://www.reuters.com/article/idUSTRE5740DV20090805 WASHINGTON (Reuters) – Two nuclear-powered Russian attack submarines have been patrolling off the eastern seaboard of the United States in the first mission of its kind so close to shore in nearly a decade, U.S. officials said on Wednesday. CUBA PORT CALL One of the Russian submarines remained in international waters on Tuesday a couple hundred miles (km) off the coast of the United States, officials said. The second sub made a port call in Cuba in recent days, the New York Times reported, citing Defense Department officials who spoke on condition of anonymity. During the Cold War, the United States and Russia regularly sent submarines on secret missions near each other’s coasts. “It is the first time in roughly a decade that we’ve seen this kind of behavior,” Morrell said. Russia conducted a successful sea trial of the Nerpa last month in the Sea of Japan, according to the RIA news agency. During testing of the submarine in November, 20 people died and 21 were hospitalized when the fire extinguishing system was turned on in error, releasing Freon gas that asphyxiated the victims. The accident, the worst to hit the Russian navy since 118 sailors died in 2000 when the Kursk nuclear submarine sank in the Barents Sea, exposed the gap between the Kremlin’s ambitions and its military capabilities.

AUVs Cannot Fly Through Red Tape.

This was forwarded by Mark Lewellan,  ATI’s AUS instructor. It shows the cost-savings of using a small AUV to take accident overview photos. However, in general, the red tape makes this difficult to do in both the US and Canada.   It looks like a bug equipped with a camera, but the small Ontario Provincial […]
This was forwarded by Mark Lewellan,  ATI’s AUS instructor. It shows the cost-savings of using a small AUV to take accident overview photos. However, in general, the red tape makes this difficult to do in both the US and Canada.   OPP Identification Constable Marc Sharpe operates an unmanned aerial vehicle used at crime scenes It looks like a bug equipped with a camera, but the small Ontario Provincial Police unmanned aircraft is making history as one of the first aerial drones being regularly used in North America by law enforcement officials. The battery-powered craft, which can stay airborne for about 15 minutes at a time, has been used at homicides and other incidents in northwestern Ontario to take aerial photos for use in court. It has helped reduce costs, too, as the provincial police would have otherwise brought in a helicopter or rented an aircraft. “We’ve saved over $30,000 the 11 times we used it,” says Const. Marc Sharpe, who operates the mini-helicopter. Aerial drones are usually associated with the military on overseas missions such as in Afghanistan and Iraq. But the remote-controlled aircraft are also starting to be used by police and firefighters in Europe and by various companies in Australia. Read more: http://www.nationalpost.com/news/story.html?id=2226289#ixzz0XWTiVWS6

Department of Defense FY 2010 Budget

After a three-month delay because of the change in administrations, DOD is submitting its FY 2010 budget request to Congress. http://www.defenselink.mil/comptroller/Budget2010.html
After a three-month delay because of the change in administrations, DOD is submitting its FY 2010 budget request to Congress. http://www.defenselink.mil/comptroller/Budget2010.html

End of Primary Mission of NASA’s Spitzer Space Telescope

NASA’S SPITZER TELESCOPE WARMS UP TO NEW CAREER WASHINGTON — The primary mission of NASA’s Spitzer Space Telescope is about to end after more than five and a half years of probing the cosmos with its keen infrared eye. Within about a week of May 12, the telescope is expected to run out of the […]
NASA’S SPITZER TELESCOPE WARMS UP TO NEW CAREER WASHINGTON — The primary mission of NASA’s Spitzer Space Telescope is about to end after more than five and a half years of probing the cosmos with its keen infrared eye. Within about a week of May 12, the telescope is expected to run out of the liquid helium needed to chill some of its instruments to operating temperatures. The end of the coolant will begin a new era for Spitzer. The telescope will start its “warm” mission with two channels of one instrument still working at full capacity. Some of the science explored by a warm Spitzer will be the same, and some will be entirely new. “We like to think of Spitzer as being reborn,” said Robert Wilson, Spitzer project manager at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “Spitzer led an amazing life, performing above and beyond its call of duty. Its primary mission might be over, but it will tackle new scientific pursuits, and more breakthroughs are sure to come.” Spitzer is the last of NASA’s Great Observatories, a suite of telescopes designed to see the visible and invisible colors of the universe. The suite also includes NASA’s Hubble and Chandra space telescopes. Spitzer has explored, with unprecedented sensitivity, the infrared side of the cosmos, where dark, dusty and distant objects hide. For a telescope to detect infrared light — essentially heat — from cool cosmic objects, it must have very little heat of its own. During the past five years, liquid helium has run through Spitzer’s “veins,” keeping its three instruments chilled to -456 degrees Fahrenheit (-271 Celsius), or less than 3 degrees above absolute zero, the coldest temperature theoretically attainable. The cryogen was projected to last as little as two and a half years, but Spitzer’s efficient design and careful operations enabled it to last more than five and a half years. Spitzer’s new “warm” temperature is still quite chilly at -404 degrees Fahrenheit (-242 Celsius), much colder than a winter day in Antarctica when temperatures sometimes reach -75 degrees Fahrenheit (-59 Celsius). This temperature rise means two of Spitzer’s instruments — its longer wavelength multiband imaging photometer and its infrared spectrograph — will no longer be cold enough to detect cool objects in space. You can learn more about Space Mission Design and Analysis at ATI Space Mission Design and Analysis

Sonar used to locate wreckage of an airplane that crashed earlier this month

Uganda enlists help of U.S. sailors to locate plane crash wreckage By Sandra Jontz, Stars and Stripes Mideast edition, Thursday, March 26, 2009 Sandra Jontz/S&S Petty Officer 1st Class Michael Beauregard, a sonar technician stationed in Sigonella, Sicily, crouches next to side-scan sonar unmanned underwater vehicle. He and two other sailors will take three units […]
Uganda enlists help of U.S. sailors to locate plane crash wreckage By Sandra Jontz, Stars and Stripes Mideast edition, Thursday, March 26, 2009 Sandra Jontz/S&S Petty Officer 1st Class Michael Beauregard, a sonar technician stationed in Sigonella, Sicily, crouches next to side-scan sonar unmanned underwater vehicle. He and two other sailors will take three units to Uganda. NAVAL AIR STATION SIGONELLA, Sicily — U.S. Navy sonar technicians from Sigonella are in Uganda helping to locate wreckage of an airplane that crashed earlier this month killing 11 onboard. Sailors with Area Search Platoon 804, a support element to Explosive Ordnance Disposal Team Mobile Unit-8, began their work Tuesday, using unmanned underwater vehicles with side-scan sonar capability to search the depths of Lake Victoria, which at 26,560 square miles, is Africa’s largest lake. “We’ve been called to assist … to locate and map out the debris field for the aircraft and assist divers in the recovery of bodies and the flight recorders,” Chief Petty Officer Manuel Ybarra, a sonar technician who has served in the Navy for 24 years, said in a recent interview. The downed Ilyushin-76 cargo plane was en route to Mogadishu, Somalia, from Entebbe International Airport when it burst into flames and plunged into the lake after takeoff, according to a media report posted on allAfrica.com. A Burundian army general and his two senior colleagues, four Russian/Ukrainian crewmembers, a South African, an Indian and two Ugandans were killed in the crash, the site reported. http://www.stripes.com/article.asp?section=104&article=61590