Advances in Satellite Antenna Technology

Most people know what Origami is.  In case you don’t, the goal of Origami is to transform a flat square sheet of paper into a finished sculpture through folding and sculpting techniques.  Modern origami practitioners generally discourage the use of cuts, glue, or markings on the paper.  So, you ask, how could Origami possibly be […]

Most people know what Origami is.  In case you don’t, the goal of Origami is to transform a flat square sheet of paper into a finished sculpture through folding and sculpting techniques.  Modern origami practitioners generally discourage the use of cuts, glue, or markings on the paper.  So, you ask, how could Origami possibly be related to anything of interest to rocket scientists?  As you will see, there most certainly is a connection between Origami and Antenna technology.

CubeSat is a miniaturized satellite, or nanosatellite, intended for space research.  Due to their small size, large numbers of CubeSats generally perform their unique tasks by working together in large constellations.  To date, there are about 1500 CubeSat satellites in orbit.

Although technology advances have allowed satellites to be effectively miniaturized, the antenna associated with each CubeSat can not be miniaturized; the laws of physics simply do not permit the antenna to be any smaller than it is.  And, since the antenna must remain large, it would not fit in the small area inside the miniature satellite.   Since the antenna is necessary to allow the satellite to communicate with other satellites, and with earth stations, there needed to be a way to get the large antenna into the small satellite. 

As explained here, Dr. Kim and his colleagues at Pusan National University and the University of Alabama, USA, developed a new deployable antenna for CubeSats.  Inspired by the mathematics which are the root of Origami, the team designed an antenna which could be folded and stored inside the Cubesat.  Once in orbit, the antenna would be deployed, and unfolded to its full and functional size.  This new advance in Antenna design now allows nanosatellites to be part of our satellite fleet.

So, although many may have thought that antenna design could not be pushed any further, Dr. Kim proved them wrong.  What other previously unimagined advances in antenna technology are yet to be imagined?

To learn more about Antennas, consider taking the upcoming ATI course entitled Antenna and Array Fundamentals.  You can learn more about this offering, and register, here.

Lastly, as always, a full listing of ATI’s courses can be found here.

Satellite Communications

Clearly, since satellites operate in space, earth stations must be able to communicate with them, and they must be able to communicate with earth stations.  Without this ability to communicate, the satellite would be of no practical use to scientists and engineers. Similarly, people must be able to communicate with each other on earth.  Telephone […]

Clearly, since satellites operate in space, earth stations must be able to communicate with them, and they must be able to communicate with earth stations.  Without this ability to communicate, the satellite would be of no practical use to scientists and engineers.

Similarly, people must be able to communicate with each other on earth.  Telephone communications generally occur with cell phones that use land-based towers to transmit and receive data.  When we need to communicate from a remote location like the middle of the desert or the middle of the ocean, there will likely be no towers to support these communications; we must rely on satellite phones to relay data through satellites.  Again, there must be a way to communicate with the satellites, and then between satellites.

Satellite Communications are essential in today’s world, and a working knowledge of Satellite Communications is essential to any engineer working in this field. ATI is offering a course Satellite Communications Design and Engineering in November, and again in February, to teach you what you need to know.  This three-day course is designed as a practical course for practicing engineers, and is intended for communications engineers, spacecraft engineers, managers and technical professionals who want both the “big picture” and a fundamental understanding of satellite communications.  You can learn more about the course, and register for it at the link found above.

And, as always, if you want to see the full set of courses offered at ATI, please visit us at www.aticourses.com.

Yep, We Really Train Rocket Scientists!

It is so exciting that we are going back to the moon.  NASA is planning a bold set of missions.  Although one of the missions will visit the moon again, the ultimate goals are much more far-reaching.  The intent is to learn from the moon visit and apply knowledge to future manned missions which will […]

It is so exciting that we are going back to the moon.  NASA is planning a bold set of missions.  Although one of the missions will visit the moon again, the ultimate goals are much more far-reaching.  The intent is to learn from the moon visit and apply knowledge to future manned missions which will visit places far beyond the moon.

We are only one month until the Artemis I mission.  For this first mission, the uncrewed Orion Spacecraft will spend four to six weeks in Space, and go far beyond the moon. To do this, a very powerful rocket is needed to accelerate an Orion spacecraft fast enough to overcome the pull of Earth’s gravity.  This will be accomplished by NASA’s Space Launch System Rocket.  This is the most powerful rocket ever used by NASA, generating 8.8 million pounds of thrust.

As spacecraft and space missions become more complex, the rockets that propel them will also need to become more complex.  Rocket advances must keep up with Spacecraft advances, and the Space Launch System is one indication that Rocket scientists are up to the challenge.

If you want to learn more about Rocket Science, consider taking ATI’s upcoming course on the subject.  You can learn more about the course, and register for it, at Rockets & Launch Vehicles – Selection & Design

This four-day course provides an overview of rockets and missiles, including a fourth day covering advanced selection and design processes. The course provides a wide practical knowledge in rocket and missile issues and technologies. 

The course is right around the corner in August, so if you are interested, do not delay.

And, as always, if want to see the full list of courses offered by ATI, you can find that, and other interesting information at www.aticourses.com

What The Heck is Astropolitics?

Since ATI has offered a course called Astropolitics for many years, and since our Astropolitics instructor is a noted expert in his field, and since we have an upcoming offering of Astropolitics, it only seemed natural that I, the new Science Advisor for ATI, should figure out “What the Heck is Astropolitics?” Most of the […]

Since ATI has offered a course called Astropolitics for many years, and since our Astropolitics instructor is a noted expert in his field, and since we have an upcoming offering of Astropolitics, it only seemed natural that I, the new Science Advisor for ATI, should figure out “What the Heck is Astropolitics?”

Most of the definitions found on the internet seem to say that Astropolitics is the theory and study of the effects that Space has on politics.  Seemingly, any political decision by any country which involves Space issues or Space implications would fall under Astropolitics.

Astropolitics includes topics such as International Space Treaties, Space Law, International Conflict in Space Exploration, and International Space Economics.  The one topic addressed by Astropolitics which the author finds most compelling is the political impact of any contact which may someday occur with extraterrestrial intelligence.  That’s right, the body that conceived of and defined the field of Astropolitics actually considered the possibility that mankind may someday discover intelligent life someplace besides earth.  As an editorial note, the author of this blog finds this inclusion to be compelling, because of his firm belief that intelligent extraterrestrial life does exist elsewhere, although it may not be discovered in our lifetime, or forever, for that matter (and I certainly do not believe these lifeforms have ever visited earth, yet.)  Although there is no currently accepted doctrine for how countries will react to the discovery of extraterrestrial life, there are ongoing efforts by multiple countries to develop a set of structured rules, standards, guidelines, or actions that governmental entities plan to follow in the event of confirmed signals form extraterrestrial civilizations.  Perhaps there are even Astropolitics discussions occurring today in some extraterrestrial civilization.  Of note, extraterrestrials are always welcome to attend ATI courses if they have a way to travel to live classes, log into virtual classes, and pay with earth currency.

For many ATI courses, including our upcoming Astropolitics Course, potential students have the opportunity to attend a free one-hour virtual short-session.  This is an opportunity for students to learn more about what will be covered in the course, and meet the instructor.  Even if you have no intention of taking the full course, you may find the Free session informative, and you may even change your mind about attending the full course.  You can learn more about both the Astropolitics Free Session, and Astropolitics – ATI Courses at these links.  While there, you will also be able to register for the Free Session or the Class, or both.

And, as always, you can learn about the full set of courses offered by ATI at www.aticourses.com

Enabling Powerful Internet Of Things ( IOTs)

Most people do not need to use a satellite to connect to the internet; they connect through wi-fi that is readily available in most urban places.  If you are in a remote location, however, you may need to connect to the internet, and Satellite Communications may be your only option.  These kinds of remote connections […]

Most people do not need to use a satellite to connect to the internet; they connect through wi-fi that is readily available in most urban places.  If you are in a remote location, however, you may need to connect to the internet, and Satellite Communications may be your only option.  These kinds of remote connections are becoming increasingly important as continuous reliable internet connectivity becomes critical for many operations.

A collection of physical devices each of which contain sensors and software, each of which are connected to the internet, and can communicate with each other via the internet, to provide some service with wide area coverage, is referred to as in Internet of Things ( IOT.)  IOTs are becoming increasingly powerful and important.  Some examples of IOTs are connected appliances, smart home security systems, autonomous farm equipment, and wireless inventory trackers.  Each of these examples rely on the fact that each physical device in the IOT is continuously reliably connected to the internet.

Sometimes, devices which comprise an IOT are in a remote area, and cannot be connected to wi-fi networks often taken for granted.  For example, autonomous farm equipment is typically operating on large farms which are outside of the range of wi-fi.  Wireless inventory trackers are often on merchant ships traveling between ports in ocean areas that do not have wi-fi connectivity.  In these cases, it is critical that the devices be able to connect to the internet using satellite communications.

So, many practicing engineers need to be familiar with Satellite Communications.

ATI offers a course called Satellite Communications Design and Engineering.   This three-day course is designed as a practical course for practicing engineers, and is intended for communications engineers, spacecraft engineers, managers and technical professionals who want both the “big picture” and a fundamental understanding of satellite communications. The course is technically oriented and includes examples from real-world satellite communications systems. It will enable participants to understand the key drivers in satellite link design and to perform their own satellite link budget calculations. The course will especially appeal to those whose objective is to develop quantitative computational skills in addition to obtaining a qualitative familiarity with the basic concepts.  You can learn more about this course, and register here.

And, as always, you can learn about the full set of courses offered by ATI at www.aticourses.com

Optical Communications Systems

Optical Communications Systems may sound very complicated, and they certainly can be very complicated, but they don’t have to be.  Think back to when you were a kid and you developed a system with your buddy who lived across the street.  You would blink your flashlight in the window two times to indicate that you […]

Optical Communications Systems may sound very complicated, and they certainly can be very complicated, but they don’t have to be. 

Think back to when you were a kid and you developed a system with your buddy who lived across the street.  You would blink your flashlight in the window two times to indicate that you were still awake, and your buddy might blink his flashlight two times to indicate that he was too.  This was an Optical Communication System in its most basic form.

As a Boy Scout, you may have learned to communicate with other scouts using two semaphore flags.  You could certainly relay more information than you did using flashlights in the window, but it was still a very basic Optical Communication System with many limitations.

Optical Communications simply refers to relaying information a distance using light to carry the information.  It can be performed visually, as in the two previous examples, or by using electronic devices.  Clearly, using electronic devices is more complex, and a more powerful way to communicate.

Typically, an optical communication system will include three components.  The Transmitter encodes the message into an optical signal.  The Channel carries the signal to its destination.  And, finally, the receiver which reproduces the original message.

The are two types of channels that can be used in a modern complex optical communication system.  Fiber optic cables can relay messages from the transmitter to the receiver, or, the message can be relayed on a laser beam.  Clearly, using a laser beam to channel the message is more conducive to long distance transmission, or transmission that needs to occur in free space. 

Optical Comms Systems have advantages over RF and Microwave Comms Systems due to their directionality, and high frequency carrier. These properties can lead to greater covertness, freedom from jamming, and potentially much higher data rates.

If you want to learn more, ATI offers Optical Communications Systems.  The course provides a strong foundation for selecting, designing and building either a Free Space Optical Comms, or Fiber-Optic Comms System for various applications. Course includes both DoD and Commercial systems, in Space, Atmospheric, Underground, and Underwater Applications.  You can learn more about this course, and register for it here.

And, as always, you can learn about the full set of courses offered by ATI at www.aticourses.com

Designing Satellite Systems with a Link Budget

Just imagine the communication that occurs between a satellite orbiting the earth and the receiving station on earth.  Clearly, in order for that communication to be successful, the signal needs to be received at the earth station with enough SNR (signal to noise ratio) for the signal to be intelligently received and acted upon at […]

Just imagine the communication that occurs between a satellite orbiting the earth and the receiving station on earth. 

Clearly, in order for that communication to be successful, the signal needs to be received at the earth station with enough SNR (signal to noise ratio) for the signal to be intelligently received and acted upon at the earth station.  

In order for the Satellite designers and the Earth Station designers to do their jobs, they must work together to ensure that transmitting satellite transmits with enough power for the receiving station/dish to understand the signal.  This would be simple if we could assume that the receiving dish receives all of the power that the satellite transmits, but that would not be a good assumption.  There are various things encountered by the signal during its trip between the satellite and the receiving station which each reduce the power of the signal by a small amount.    The transmitter must know how much its transmission will be reduced by all of those things, and account for those losses by boosting transmitting power by that amount so that a reduced received power will still be sufficient for the receiving station to get sufficient SNR in the signal.

A Satellite Link Budget is an accounting of all of the gains and looses that signal will experience in space between a transmitter and a receiver.

So, what are the things that may increase or decrease the power of a signal during its journey between a transmitter and a receiver?

Rain is one example of something that reduces the power contained in the signal.  A designer must assume that it will always be raining during the transmission, or they will end up with a system which is only effective on non-rainy days.  This would not be a good design.

The easiest way to account for gains and losses is with a proven computer tool like SatMaster from Arrowe.  Rain models from the ITU (International Telecommunications Union) provide a viable methodology for assessing rain attenuation in microwave and millimeter wave bands.

And, what are some of the other things that will reduce transmitted power?  These are all great questions, beyond the scope of this blog.

If you design transmitters, or if you design receivers, or if you simply want to learn more about Satellite Link Budgets, consider taking the upcoming ATI course Satellite Link Budget Training on the Personal Computer – GEO and non-GEO, L through Q/V bands. You can learn more about this course and register to attend the course here.

These Probes are Out of This World

As I stare into the night sky, I sometimes find myself thinking about how vast the universe is.  Sometimes, while thinking about where space ends, or the fact that space never ends, I start to feel very uneasy.  Regardless, I will blog about it, but I am not happy about it. There are currently only […]

As I stare into the night sky, I sometimes find myself thinking about how vast the universe is.  Sometimes, while thinking about where space ends, or the fact that space never ends, I start to feel very uneasy.  Regardless, I will blog about it, but I am not happy about it.

There are currently only 5 Planetary Probes which have left the solar system, and are continuing on their path to the infinite unknown.  Each of these probes were launched into interstellar space by a multistage rocket, and the final stage of each rocket is also on a similar path to the unknown, but these rocket parts are merely space junk now, and we will not discuss those here.

Pioneer 10 was the first Planetary Probe launched in 1972.  We have not had contact with Pioneer 10 since 2003, but before loosing contact, we saw it pass Jupiter, and it is now presumably heading toward a star in the constellation of Taurus.

Pioneer 11 was launched the following year in 1973.  We have not had contact with Pioneer 11 since 1995, but before loosing contact, we saw it pass Jupiter, and Saturn.  Pioneer 11 will arrive at its target in the constellation of Sagittarius in 4 million years.

Voyager 1 and Voyager 2 were both launched in 1977.  They both remain active and send data to earth.  They left the solar system in 2012 and 2018, respectively. 

The last Planetary Probe to leave the Solar System was New Horizons, launched in 2006.  New Horizons remained active as it passed Pluto and returned imagery in 2015.  New Horizons still remains active and is continues sending scientific data to earth.

It is truly remarkable that mankind has sent probes so far into space, and even more amazing that some of these probes are still returning data to earth. 

These feats would not have been possible without exceptional rockets, and exceptional rocket scientists.

To learn more about Rocket Propulsion, or to sharpen your skills as a Rocket Scientist, consider taking one of ATI’s upcoming courses on the topic.

Both Rocket Propulsion 101 and Rockets and Launch Vehicles – Selection and Design will be offered in February, 2022.

As always, a full listing of ATI courses can be found here.

Real Life Sometimes Imitates Fiction

Although 2021 has not been such a bad year so far, after a year like 2020, we sometimes ask ourselves … “what else could possibly go wrong?”  Thanks to movies like Armageddon, Don’t Look Up, Deep Impact, Ice Age, and others, we can again sleep restlessly knowing that Earth could be annihilated at any moment […]

Although 2021 has not been such a bad year so far, after a year like 2020, we sometimes ask ourselves … “what else could possibly go wrong?”  Thanks to movies like Armageddon, Don’t Look Up, Deep Impact, Ice Age, and others, we can again sleep restlessly knowing that Earth could be annihilated at any moment by an asteroid impact.  Although an asteroid impact is often thought of as science fiction, it is something that can actually happen.  In fact, many believe that the extinction of dinosaurs was the result of an ancient asteroid impact.  Although it is not something that we ever expect to see in our lifetime, the possibility of an impact in the distant future cannot be ruled out.  Consequently, scientists are already thinking about what we would do if we were ever faced with that scenario for real.     

So, what’s the first step?

The Double Asteroid Redirection Test ( DART ) Mission is being developed and lead for NASA by the Johns Hopkins University Applied Physics Laboratory.  A full description of the Mission can be found here.  The DART mission is NASA’s demonstration of kinetic impactor technology impacting an asteroid to adjust its speed and path.  Mission literature goes to extreme lengths to assure the public that this particular asteroid is NOT on a path to earth, and that this impact will not cause the asteroid to take aim on earth.  It is simply a demonstration of our ability to take action in the event that earth is ever threatened.     

DART arrives at the asteroid in October of 2022.  I am sure we will hear more about the Mission at that time, and we will devote another blog to DART at that time also.

A mission like this involves so many of the skills that are taught in ATI’s courses related to Space and Systems Engineering.  Please take a look at our courses here, and see what courses may be helpful to you and your team, so that you can be a contributor in future space missions that have such a huge impact, no pun intended.

SPACEX

On September 15, a SPACEX rocket ship launched four people into earth’s orbit.  The purpose of this blog is not to share all the amazing facts; if you want to read them, you can do it here.  Yes, there has been a lot of space trips going on lately, but I think this one is […]

On September 15, a SPACEX rocket ship launched four people into earth’s orbit.  The purpose of this blog is not to share all the amazing facts; if you want to read them, you can do it here.  Yes, there has been a lot of space trips going on lately, but I think this one is different for a number of reasons.

First of all, the crew of this mission are all amateur astronauts.  Each of the astronauts have a reason for wanting to fly this mission, but the reasons seem to be more philanthropic than with recent space trips.  In fact, the financier for this mission was Jared Isaacman, founder and CEO of a financial services firm.  He financed this mission to raise awareness and donations for St. Jude Children’s Research Hospital.

Secondly, these astronauts are going to be spending days in orbit, not minutes.  The mission will last three days, from launch to splashdown.  For other missions, the goal for the astronauts was to simply check a box that said they entered space, for however brief a period.  For SPACEX, there was actually work done while in space.

Lastly, this mission will orbit at 363 miles above the earth, far higher than previous space trips.  In fact, for one of the previous space trips, it has been questioned whether or not the capsule even reached what is accepted as “space.”

This mission, still in progress at the time of this writing, is shaping up to be really spectacular.

ATI offers many courses related to Space exploration.  You can see our course list here.

And, as always, a full listing of ATI’s courses can be found here.

Advances in Satellite Antenna Technology

Most people know what Origami is.  In case you don’t, the goal of Origami is to transform a flat square sheet of paper into a finished sculpture through folding and sculpting techniques.  Modern origami practitioners generally discourage the use of cuts, glue, or markings on the paper.  So, you ask, how could Origami possibly be […]

Most people know what Origami is.  In case you don’t, the goal of Origami is to transform a flat square sheet of paper into a finished sculpture through folding and sculpting techniques.  Modern origami practitioners generally discourage the use of cuts, glue, or markings on the paper.  So, you ask, how could Origami possibly be related to anything of interest to rocket scientists?  As you will see, there most certainly is a connection between Origami and Antenna technology.

CubeSat is a miniaturized satellite, or nanosatellite, intended for space research.  Due to their small size, large numbers of CubeSats generally perform their unique tasks by working together in large constellations.  To date, there are about 1500 CubeSat satellites in orbit.

Although technology advances have allowed satellites to be effectively miniaturized, the antenna associated with each CubeSat can not be miniaturized; the laws of physics simply do not permit the antenna to be any smaller than it is.  And, since the antenna must remain large, it would not fit in the small area inside the miniature satellite.   Since the antenna is necessary to allow the satellite to communicate with other satellites, and with earth stations, there needed to be a way to get the large antenna into the small satellite. 

As explained here, Dr. Kim and his colleagues at Pusan National University and the University of Alabama, USA, developed a new deployable antenna for CubeSats.  Inspired by the mathematics which are the root of Origami, the team designed an antenna which could be folded and stored inside the Cubesat.  Once in orbit, the antenna would be deployed, and unfolded to its full and functional size.  This new advance in Antenna design now allows nanosatellites to be part of our satellite fleet.

So, although many may have thought that antenna design could not be pushed any further, Dr. Kim proved them wrong.  What other previously unimagined advances in antenna technology are yet to be imagined?

To learn more about Antennas, consider taking the upcoming ATI course entitled Antenna and Array Fundamentals.  You can learn more about this offering, and register, here.

Lastly, as always, a full listing of ATI’s courses can be found here.

Leading The Way, To Diversity

Leading by example, that is one of the things that I admire most. Leading people on, that is something I do not like at all. So, you may be asking, where am I going with this blog?  I am glad you asked. I have been active in STEM recruiting for many years.  I have always […]

Leading by example, that is one of the things that I admire most.

Leading people on, that is something I do not like at all.

So, you may be asking, where am I going with this blog?  I am glad you asked.

I have been active in STEM recruiting for many years.  I have always been of the belief that Science and Engineering stands to benefit immensely by having a diverse work force.  For that reason, I believe that it is important that smart and enthusiastic people be attracted to, and recruited by, the STEM workforce.  This should include males and females, young and old, minorities and non-minorities, democrats and republicans, straight and gay, I could go on and on.  But we must find people who are joining the STEM workforce for the right reasons.  I do not believe that anyone, regardless of their demographics, should be encouraged to enter the STEM workforce solely because jobs are plentiful or salaries are high.  To recruit someone using only these enticements would simply be “leading them on.”  It would set those individuals up for unhappiness and failure, and that would be wrong.  STEM workers need to love STEM, and find a job which allows them to love working in STEM.  A better way for recruiting a diverse STEM workforce would be for a STEM professional from one of the underrepresented groups “leading by example”, thus showing other members of that underrepresented group that STEM careers can be fun and rewarding as well as profitable.

I recently learned about Abagail Harrison, also known as Astronaut Abby.  She is a young  STEM professional from an underrepresented group, and she is effectively leading by example.  She generally does not call attention to the fact that she is a well-paid woman in STEM, but rather, she simply shows her excitement and her achievements in STEM, and thus becomes a role model that similar underrepresented people can aspire to, if, and only if, they are attracted to work in the STEM field.    Take a look at her Mars Generation Page, and you will see what I mean. 

Abagail does occasionally use her blog to salute certain underrepresented groups.  In one blog post, she identifies “11 Women Who Broke Barriers in the Space Industry”.  In another recent blog post, she identified “10 Black Americans Who Made Extraordinary Contributions to Space Exploration.”  In both these cases, she is providing a list of role models who our future STEM workforce can look up to.

So, what can a Technical Training company do to increase diversity in the STEM workforce?  We can continue to track our statistics, and watch to see if the situation is improving.  We look forward to a day in the future when the efforts of people like Abagail Harrison will result in a more diverse STEM workforce, a more diverse set of potential Instructors, and a more diverse Student pool.  When that day comes, ATI will be blessed with the opportunity to have more underrepresented Instructors, and more underrepresented students. 

In the meantime, please support businesses like ours that are making every effort to see more diversity in the STEM workforce.  To learn more about Applied Technology Institute, or to register for one of our courses, or to register for one of our free short courses, please visit us at www.ATIcourses.com.

You’re Going To The Moon, Alice

Mankind has always been fascinated with exploring the Moon, and that will probably always be the case.  At first, in the time leading up to the famous first moon landing in 1969, the goal was simply to reach the moon, and spend a short time looking around, and return to earth safely.  Now, 50 years […]

Mankind has always been fascinated with exploring the Moon, and that will probably always be the case.  At first, in the time leading up to the famous first moon landing in 1969, the goal was simply to reach the moon, and spend a short time looking around, and return to earth safely.  Now, 50 years later, the goal is more ambitious since technology can support so much more.  The first objective today is to reach the moon, and stay there.  The next goal would be to use the moon as a landing pad to support exploration of things beyond the moon, most notably Mars.  The NASA Artemis Missions will be the way these objectives are accomplished.  I am not sure about you, but this mission snuck up on me, and I am learning about it now. 

The Artemis Mission is comprised of six projects which together will allow NASA to accomplish its goals of reaching the moon, staying on the moon for long term exploration, and getting closer to ultimate goal of being able to send men (and women) beyond the moon.  The six projects include:

Ground Systems – Upgrading Earth ground systems to support the larger rockets which will be needed

Space Launch System – The new and more powerful rocket that will launch man toward the moon and beyond

Orion – The spacecraft that will bring astronauts to the moon’s orbit, and return them to earth from the moon’s orbit

Gateway – The outpost spacecraft which will orbit the moon and be living quarters for the astronauts when they are not on the moon surface

Lunar Landers – The spacecraft which will transfer astronauts between the Gateway and the moon Surface, and

Space Suits – The new and improved suits that the astronauts will need to carry out their mission.

The timeline for this mission has three major milestones, namely, the three Artemis missions, Artemis I, Artemis II, and Artemis III.

Artemis I – an unmanned flight to test the Space Launch System and Orion, scheduled for 2021

Artemis II – a manned flight to test the Space Launch System and Orion, scheduled for 2022

Artemis III – A manned flight to the moon that will return man to the moon.

This is a truly ambitious mission, and an even more ambitious schedule.

ATI offers a plethora of courses which relate to Space exploration.  Check out our list of Space related courses here.    If you are interested in the legal aspects of Space exploration, you can register for our upcoming Astropolitics class here

Although the author thinks Space Exploration is exciting and important, and I fully endorse all of the goals of the Artemis Mission, I can’t help but wonder why the Government is not spending at least as much money on exploration of the deep oceans.  I would challenge the US to start investing more money in Ocean Exploration, but not at the expense of Space Exploration.  Both of these are important.  I am curious what readers think about this issue, please leave your comments below.

And, if you are interested in Ocean Exploration, ATI has a few courses which may be of interest to you too.  Please check out our full list of offerings here.

And if you simply want to learn more about the Artemis Mission, you can go to the NASA Artemis site that describes the mission in more detail. 

SPACEX Is At It Again

There is a new record for the most spacecraft launched by a single rocket at one time.  In January, The Transporter-1 mission, part of  SpaceX’s SmallSat Rideshare Program, lifted off atop a Falcon 9 booster from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida with 143 satellites aboard.  Among the satellites […]

There is a new record for the most spacecraft launched by a single rocket at one time.  In January, The Transporter-1 mission, part of  SpaceX’s SmallSat Rideshare Program, lifted off atop a Falcon 9 booster from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida with 143 satellites aboard.  Among the satellites in the payload, 10 SpaceX STARLINK satellites, which will be added to a constellation which will provide a global internet system.

Many more details on this amazing accomplishment can be found at the SPACEX website, SpaceX Falcon 9 Transporter 1 Rocket Launch – January 2021 – Space Coast Launches

Additional details on upcoming SPACEX Launches can also be found at this site.

To learn more about Space Missions like these, please consider taking one of the many Space Courses offered virtually at this time by Applied Technology Institute. 

A complete list of ATI Space Courses can be found at  https://aticourses.com/events/cat-5-space-satellite-and-aerospace/

Apollo Trash Talk

Since it has been 50 years since man first stepped on the Moon (Apollo 11), and since we are now winding down from the celebration of the 50th anniversary of that great event, we should remember that there are still physical remnants of that mission, and other missions, which remain on the surface of the […]

Since it has been 50 years since man first stepped on the Moon (Apollo 11), and since we are now winding down from the celebration of the 50th anniversary of that great event, we should remember that there are still physical remnants of that mission, and other missions, which remain on the surface of the moon, and that this landing site, and similar landing sites, have significant historical importance.  In fact, there is an organization called “For All Moonkind, Inc”, which has a stated mission to “protect each of the six human lunar landing and similar sites in outer space as part of our common human heritage.”  Learn more about this organization at https://www.forallmoonkind.org

So, what did mankind leave on the moon, and why did we leave it there?  A full catalog of items left behind can be found at https://history.nasa.gov/FINAL%20Catalogue%20of%20Manmade%20Material%20on%20the%20Moon.pdf    It is a fascinating read, but why was so much left behind?  Some of the things left behind were memorial or tributary items.  Other items were left purely to lighten the load and facilitate the return trip to earth.  And there were items left for scientific experiments.  For experiments, some items were left because engineers are simply hoping to examine them in the future to determine how they have fared after continuous exposure to the elevated radiation levels on the moon.  Other items, however, were part of actual moon experiments which delivered data to earth scientists.   The only remaining Apollo experiment that still returns data to earth after 50 years is NASA’s Lunar Ranging Experiment, LURE.

 The story of LURE is a fascinating one and can be found at https://spectrum.ieee.org/the-institute/ieee-history/one-apollo-11-experiment-is-still-going-50-years-later  LURE allows the precise measurement of the distance from the earth to the moon using high power laser on earth, and an array of mirrors, or retroreflectors, on the surface of the moon.  The first mirrors were placed on the moon by Apollo 11, but additional mirrors were placed on the moon by later Apollo missions.  Lunar laser ranging has allowed man to monitor the distance to the moon for the past 50 years, and we have noted that the distance to the moon increases by a very small amount each year.  Additionally, LURE has increased mankind’s fundamental understanding of things like the earth’s rotations, continental drift, and gravity itself.

As it is now 2019, and the world is more waste-conscious than it has ever been, we can only hope that there will be increased attention to reducing the amount we leave on the lunar surface, and in space.  Although some material will certainly be left during upcoming planned lunar landings, we can only hope that it will be done for rational reasons, and in a sensible way.

To learn more about working in Space, consider taking one of the many Space, Satellite, or Aerospace courses offered by ATI.  A complete listing of all ATI courses can be found at https://aticourses.com/courses    ATI does not currently offer any Space Archeology classes, but if anyone knows a qualified instructor for this class, we would be happy to talk to them.

Welcome to the US Space Force, ATI is here to support you

There are currently 5 branches of the Armed Forces, namely, Army, Navy, Marines, Air Force,  and the Coast Guard.  However, in light of changing needs and priorities, President Trump issued a new directive in February to establish the US Space Force as the sixth military branch,  which will be within the Department of the Air […]

There are currently 5 branches of the Armed Forces, namely, Army, Navy, Marines, Air Force,  and the Coast Guard.  However, in light of changing needs and priorities, President Trump issued a new directive in February to establish the US Space Force as the sixth military branch,  which will be within the Department of the Air Force. 

This directive can be found at  

https://www.whitehouse.gov/presidential-actions/text-space-policy-directive-4-establishment-united-states-space-force/

The directive states that “ Although United States space systems have historically maintained a technological advantage over those of our potential adversaries, those potential adversaries are now advancing their space capabilities and actively developing ways to deny our use of space in a crisis or conflict.  It is imperative that the United States adapt its national security organizations, policies, doctrine, and capabilities to deter aggression and protect our interests.”

The directive provides the following priorities for the Space Force:

(a)  Protecting the Nation’s interests in space and the peaceful use of space for all responsible actors, consistent with applicable law, including international law;

(b)  Ensuring unfettered use of space for United States national security purposes, the United States economy, and United States persons, partners, and allies;

(c)  Deterring aggression and defending the Nation,
United States allies, and United States interests from hostile acts in and from space;

(d)  Ensuring that needed space capabilities are integrated and available to all United States Combatant Commands;

(e)  Projecting military power in, from, and to space in support of our Nation’s interests; and

(f)  Developing, maintaining, and improving a community of professionals focused on the national security demands of the space domain.

The directive specifies that Space Force will be lead by a civilian to be known as the Undersecretary of the Air Force for Space, and will be appointed by the President and approved by the Senate.  The directive specifies that a senior military officer ( General or Admiral ) will serve as the Chief of Staff of the Space Force, and will serve as a member of the Joint Chiefs of Staff. 

Applied Technology Institute looks forward to providing training to the workforce which will be needed to support the US Space Force. 

A list of all the Space Related Courses offered by ATI can be found at

https://aticourses.com/catalog_of_all_ATI_courses.htm#space

 

Specific and upcoming Space-Related Courses include:

Communications Payload Design

Mar 19-22, 2019 Columbia, MD

 Tactical Intelligence, Surveillance & Reconnaissance (ISR) System

Mar 25-28, 2019 Columbia, MD

 Space Mission Structures

Apr 16-18, 2019 Littleton, CO

 Vibration Testing of Small Satellites

Apr 30-May 1, 2019 Littleton, CO

 Satellite Communications- Introduction

May 1-3, 2019 Columbia, MD 

If your organization requires Space-Related Training which you do not currently see in our Course Offerings, please give us a call and we will try to accommodate your needs. 

Recall That Curiosity Rover Was Delivered to Mars by an ATLAS Rocket in 2011

There are so many Space Exploration Missions that are on the front page of the papers now, New Horizons for example.  Let us not forget about ongoing missions that are no longer getting as much publicity at they may deserve, JPL Mars Science Lab Curiosity Rover Mission for example.The Curiosity Rover Mission was launched in […]

There are so many Space Exploration Missions that are on the front page of the papers now, New Horizons for example.  Let us not forget about ongoing missions that are no longer getting as much publicity at they may deserve, JPL Mars Science Lab Curiosity Rover Mission for example.

The Curiosity Rover Mission was launched in November 2011 for an 8-month trip to Mars.  Once on Mars, the Curiosity Mission was expected to last 2 years.  Amazingly, the Curiosity Rover Mission is still in progress, and periodic updates on the status of that mission are still being posted at https://mars.nasa.gov/msl/mission/mars-rover-curiosity-mission-updates/

The success of that mission did not start when the Rover started sending back amazing pictures from Mars.  The success of that mission started when the Rocket and Launch Vehicle propelled Rover into Space.    The Atlas V-541 Rocket selected for this mission and built by Boeing Corp and Lockheed Martin Corp.  performed as designed.  If it had not performed as well as it did, the entire mission could have been in jeopardy.  Rockets and Launch Vehicles are truly acritical component of every mission.

ATI is offering a Course on Rocket and Launch Vehicles in Columbia, Maryland from February 11 to 14, 2019.  The course is being taught by Edward Keith, a multi-discipline Launch Vehicle System Engineer, specializing in integration of launch vehicle technology, design, modeling and business strategies.  There is still time to enroll in this class, and you will be finished in time to get home for dinner on Valentine’s day! 

Please consider learning more about this ATI offering, and enroll in the ATI class, by going to https://aticourses.com/rockets_launch_vehicles.html

 

Bombers and Subs and Missiles, oh my!

Speaking for myself, I always considered the nuclear triad to include bombers, submarines, and missiles, but, I was wrong. Sandra Erwin points out in her Space News article, we really need to remember that these three components of the triad could not be effective without two other complimentary components, a competent work force to operate […]

Speaking for myself, I always considered the nuclear triad to include bombers, submarines, and missiles, but, I was wrong. Sandra Erwin points out in her Space News article, we really need to remember that these three components of the triad could not be effective without two other complimentary components, a competent work force to operate them, and a modern and reliable Nuclear Command, Control and Communications ( NC3 ) network.

Lt. Gen Jack Weinstein, Air Force Deputy Chief of Staff for Strategic Deterrence and Nuclear Integration recently pointed out that nuclear modernization efforts cannot be strictly focused on subs, bombers, and missiles, but must also be concerned about modernizing the NC3 system, causing him to remark “The Triad also means space capability.” The Nuclear Posture Review reported that many of the components of the current NC3 system are antiquated technology which has not been modernized in almost 30 years. 

Sandra Erwin reports that the Air Force does have programs under way to modernize communications and early-warning satellites, but integration of these new systems will be very complex, and highly trained work force will be needed to build the systems.

Interestingly, Lt. Gen Weinstein has confidence in the military’s ability to train their people to operate these systems, but he expresses concern about educating the civilian workforce which will also need to be involved.

Applied Technology Institute (ATI) can play an important role in preparing the workforce which will support the future nuclear Triad since it offers a diverse collection of courses which cover all of the domains where the Triad will need to operate; air, sea, and space. Please consider looking at the current set of course offerings at ATI and consider taking some of our courses to better position yourself to make significant contributions to solving the complex problems associated with Strategic Deterrence in the future.  

 

Launch Time

In less than a week, on April 16, a SpaceX Falcon 9 Rocket will launch NASA’s Transiting Exoplanet Survey Satellite ( TESS ), and I will be watching. I am not going to be able to break away from my daily grind to go to Florida for the launch, but I will still have a […]
As a Falcon 9 rocket stands ready for liftoff at the Kennedy Space Center's Launch Complex 39A. The rocket will boost a Dragon resupply spacecraft to the International Space Station. Liftoff is scheduled for 5:55 p.m. EDT. On its 11th commercial resupply services mission to the space station, Dragon will bring up 6,000 pounds of supplies, such as the Neutron star Interior Composition Explorer, or NICER, instrument to study the extraordinary physics of neutron stars.
A Falcon 9 rocket stands ready for liftoff at the Kennedy Space Center’s Launch Complex 39A.

In less than a week, on April 16, a SpaceX Falcon 9 Rocket will launch NASA’s Transiting Exoplanet Survey Satellite ( TESS ), and I will be watching. I am not going to be able to break away from my daily grind to go to Florida for the launch, but I will still have a really good view of the launch.  My plan it use an App that I recently loaded onto my Iphone.  “Launch 321” is an Augmented Reality (AR ) app created by USA TODAY that will give me a front row seat for the launch.  As explained by US TODAY, this app “fuses traditional Space Coast Rocket Launch coverage with augmented reality.”

April 16 will be my first live launch with “Launch 321”, but I am planning on a pretty spectacular experience.

Don’t wait until launch day to load the app because there lots of features in the App that allow you to learn about pre-launch procedures so that you will be ready to take full advantage of the app on the launch day, and future launch days.

Check back on this blog after April 16 and I will share what the experience was like.

You can read more about the App in the USA Today article.

And, if you want to learn more about Space, Satellite & Aerospace topics, consider taking one of the many courses offered by ATI. A complete list of offerings can be found here.

JPL’s Dressmaker

Did you read the recent story about JPL “dressmaker” Lien Pham who makes thermal blankets for spacecraft? The materials, methods, and techniques are an amazing combination of traditional and very techy. “What kind of materials go into a thermal blanket? We use multiple layers of Mylar films with Dacron netting to separate them. For the outermost surface, we use […]

Did you read the recent story about JPL “dressmaker” Lien Pham who makes thermal blankets for spacecraft? The materials, methods, and techniques are an amazing combination of traditional and very techy.

“What kind of materials go into a thermal blanket?

We use multiple layers of Mylar films with Dacron netting to separate them. For the outermost surface, we use Kapton film or Beta cloth, which resist temperature change. We also use gold Kapton, which is good for conducting electricity. There’s a black material called carbon field Kapton. That’s for a charged environment, with a lot of electricity. It dissipates the charge. What Kind of tools do you use? We use commercial sewing machines designed for thick material such as denim. It has a walking feed that pulls in the material and cuts our sewing thread automatically. We also use a variety of hand tools like a measuring scale, scissors, surgical scalpels, hole punches, a heat gun, leather punch and weight scale.”

BBC.com article on Lian Pham and the JPL seamstresses explains

“Nasa hires women with sewing experience for a reason. When engineers couldn’t figure out how to work with Teflon – the non-stick material that coats many saucepans – they were at a loss. Lien suggested folding the edge of the material and sewing it like a hem, as she would with a shirt at home. It worked.”

Science News Technology Space NASA Artificial Intelligence Weird Science Science of Sci-Fi Giant Exoplanet With Carbon Monoxide Atmosphere ‘Defies All Expectations’

Applied Technology Institute (ATICourses) is offering a brand new Exoplanets course.  The news below could be of interest to our readers. This is the kind of discovery that reminds you just how little weactually know about space. Scientists have found a mysterious exoplanet 10 times the size of Jupiter—and no one can quite explain it. […]
9ba340aa7f1de69ad6ad7f6ace4d13f9_LApplied Technology Institute (ATICourses) is offering a brand new Exoplanets course.  The news below could be of interest to our readers.
This is the kind of discovery that reminds you just how little weactually know about space. Scientists have found a mysterious exoplanet 10 times the size of Jupiter—and no one can quite explain it.
Wrapped in carbon monoxide and water-free, scientists located inhospitable exoplanet WASP-18b with the Hubble and Spitzer telescopes about 330 light years from Earth.
The exoplanet might be far away, but it’s a giant in its neck of the woods—it has the mass of approximately 10 Jupiters.
NASA researchers note it has a stratosphere, as does Earth, but unlike our stratosphere, where the abundance of ozone absorbs UV radiation and helps protect our planet, WASP-18b’s is loaded with carbon monoxide—a rare discovery.
“We find evidence for a strong thermal inversion in the dayside atmosphere of the highly irradiated hot Jupiter WASP-18b…based on emission spectroscopy from Hubble Space Telescope secondary eclipse observations and Spitzer eclipse photometry,” researcher Kyle Sheppard said. “The derived composition and profile suggest that WASP-18b is the first example of both a planet with a non-oxide driven thermal inversion and a planet with an atmospheric metallicity inconsistent with that predicted for Jupiter-mass planets.”
WASP-18b is a “hot Jupiter,” which unlike the gas giants of our solar system that are positioned with distance from the Sun, are especially close. Our Jupiter takes 12 years to orbit the sun once, WASP-18b circles its star every 23 hours.
Read more here.

NASA Wants Your Help to Name a Space Object, What Could Go Wrong

There’s a small, icy object floating at the outer edge of our Solar System, in the messy Kuiper belt. Or it could be two objects, astronomers are not sure. But NASA is on track to find out more, as that object has been chosen as the next flyby target for the New Horizons spacecraft – the […]
quaoar_animation_dark_crsub_circleThere’s a small, icy object floating at the outer edge of our Solar System, in the messy Kuiper belt. Or it could be two objects, astronomers are not sure. But NASA is on track to find out more, as that object has been chosen as the next flyby target for the New Horizons spacecraft – the same probe that gave us incredible photos of Pluto in 2015. And now they want your help to give that target a catchy name. Currently, the enigmatic Kuiper belt object is designated 2014 MU69, but that’s just the provisional string of letters and numbers any newly discovered object gets. “Yes, we’re going to give 2014 MU69 a real name, rather than just the “license plate” designator it has now,” New Horizons’ principal investigator Alan Stern wrote in a blog post earlier this year. “The details of how we’ll name it are still being worked out, but NASA announced a few weeks back that it will involve a public naming contest.” And now, folks, our time to shine has arrived. NASA has finally extended an invitation for people to submit their ideas for a name, although they note this is not going to be the officially-official name just yet, but rather a nickname to be used until the flyby happens. The team at New Horizons already have a bunch of ideas prepared, which now form the basis of the naming campaign, and anyone can already vote for those. Amongst current choices put forward by the team are Z’ha’dum – a fictional planet from the TV series Babylon 5; Camalor – a fictional city actually located in the Kuiper belt according to Robert L. Forward’s novel Camelot 30K; and Mjölnir – the name of Norse thunder god Thor’s epic hammer. One of the most interesting aspects of MU69 is that we’re not even sure whether the object is one body or two – telescope observations have hinted it could actually be two similarly-sized bodies either in close mutual orbit, or even stuck together. Read more.

NASA Center Directors Launch World Series Bragging Rights Duel

Following up on our last blog and from a Press Release posted Thursday, October 26, 2017, by the JetPropulsion Laboratory: When it comes to space exploration, many believe America must make a choice between having human “Astros” exploring the solar system or using robotic probes as planet or asteroid “Dodgers.” NASA sees both approaches as essential […]
nasa-dodgers-blog-image Following up on our last blog and from a Press Release posted Thursday, October 26, 2017, by the JetPropulsion Laboratory: When it comes to space exploration, many believe America must make a choice between having human “Astros” exploring the solar system or using robotic probes as planet or asteroid “Dodgers.” NASA sees both approaches as essential to expanding the human presence in the universe. But that doesn’t mean that two of NASA’s centers can’t engage in a little friendly rivalry when it comes to their hometown baseball teams competing in the 2017 World Series. Houston is home to both the American League’s Houston Astros and NASA’s Johnson Space Center (JSC), the hub of human spaceflight, while the Los Angeles area is home to both the National League’s L.A. Dodgers and NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, one of the pillars of robotic space and planetary missions. On behalf of their respective centers, JSC Director Ellen Ochoa, who actually is a native Californian, and JPL Director Michael Watkins, who actually is a University of Texas at Austin alumnus, have decided the World Series deserves to be the subject of a little bragging rights wager. So, here’s the contest: If the Houston Astros win the best-of-seven series, Watkins will have to wear an Astros jersey for a day. If the series goes the L.A. Dodgers’ way, Ochoa will wear a Dodgers jersey. “JSC is proud to be a citizen of Houston, and, as such, we are proud of all the city’s accomplishments and its great spirit,” Ochoa said. “And our team is actually named after our space center, so I’m happy to be able to show support for that, and glad to have a little fun in challenging a center that, except for this week, is our close partner in exploration. I am looking forward to seeing a little bit of Houston at JPL soon.” “JPLers are proud to work and live in the Los Angeles area here in beautiful Southern California,” Watkins said. “We love the chance to show our support for this great city, and for the great baseball tradition of the Dodgers. This is a nice way to have a little fun with our good friends at JSC and we hope to see some Dodger blue there shortly.” When it comes to the reality of spaceflight, the two centers have collaborated and compared notes on a variety of space projects for nearly half a century. NASA understands that robotic exploration has always been a precursor to human space exploration and that more and more, we see robots and humans flying together, helping each other explore. Rather than rivals, JSC and JPL are close teammates in expanding our knowledge of the universe and increasing the limits humanity explores. But in the meantime, JSC invites all Astros fans to “Orange Out” and JPL invites all Dodgers fans to “Bleed Blue.” May the best team win!

GREAT OLD, BIG, HUGE BLACK HOLES

In 1905 Albert Einstein employed one of the most powerful brains on planet Earth to puzzle out an elusive concept called “The Special Theory of Relativity”.  Ten years later he used those same brain cells to develop his even more powerful “General Theory of Relativity”. Figure 1 highlights his most dramatic proposal for proving – […]
In 1905 Albert Einstein employed one of the most powerful brains on planet Earth to puzzle out an elusive concept called “The Special Theory of Relativity”.  Ten years later he used those same brain cells to develop his even more powerful “General Theory of Relativity”. Figure 1 highlights his most dramatic proposal for proving – or disproving! – his General Theory of Relativity.  The test he proposed had to take place during a total eclipse of the sun.  For, according to The General Theory of Relativity, light from a more distant star would be bent by about one two-thousandths of a degree when it swept by the edge of the sun. Four years later (in 1919) the talented British astronomer Arthur Eddington in pursuit of a total eclipse of the sun, ventured to the Crimean Peninsula to perform the test Einstein had proposed based on the idea that “starlight would swerve measurably as it passed through the heavy gravity of the sun, a dimple in the fabric of the universe.”* A black hole comes into existence when a star converts all of its hydrogen into helium and collapses into a much smaller ball that is so dense nothing can escape from its gravitational pull, not even light. Capture3 Figure 1:  In 1915, when he finally worked out his General Theory of Relativity, Albert Einstein proposed three clever techniques for testing its validity.  Four years later, in 1919 the British astronomer, Arthur Eddington, took advantage of one of those tests during a total eclipse of the sun to demonstrate that, when a light beam passes near a massive celestial body, it is bent by the local gravitational field as predicted by Einstein’s theory.  This distinctive bending is similar to the manner a baseball headed toward home plate is bent downward by the gravitational pull of the earth. The existence of black holes was inadvertently predicted by a mathematical relationship Sir Isaac Newton understood and employed in 1687 in developing many of his most powerful scientific predictions, including the rather weird concept of escape velocity.  As Figure 2 indicates, it is called the Vis Viva equation. Start by solving the Vis Viva equation for the radius Re, then plug in the speed of light, C, as a value for the escape velocity, Ve.  The resulting radius Re is the so-called “event horizon”, which equals the radius at which light cannot escape from an extremely dense sphere of mass, M.  As the calculation on the right-hand side of Figure 2 indicates, if we could somehow compressed the earth down to a radius of 0.35 inches – while preserving its total mass light waves inside the sphere would be unable to escape and, therefore, could not be seen by an observer.  The radius of the event horizon associated with a spherical body of mass, M, is directly proportional to the total mass involved. Capture4 Figure 2:  The Vis Viva equation was developed and applied repeatedly by Isaac Newton when he was evaluating various gravity-induced phenomena.  Properly applied, the Vis Viva equation predicts that sufficiently dense celestial bodies generate such strong gravitational fields that nothing – not even a beam of light – can escape their clutches.  Today’s astronomers are discovering numerous examples of this counterintuitive effect.  Black holes are one result. As Figure 3 indicates, an enormous black hole 50 million light years from Earth has been discovered to have a mass equal to 2 billion times the mass of our sun.   It is located in the M87 Galaxy in the constellation Virgo. Capture5 Figure 3:  In 1994 the Hubble Space Telescope discovered a huge black hole approximately 300,000,000,000,000,000,000,000 miles from planet Earth nestled among the stars of the M87 galaxy in the Virgo constellation.  Astronomers estimate that it is 2,000,000,ooo times heavier than our son.  That black hole’s event horizon has a radius of 3,700,000,000 miles or about 40 astronomical units. One astronomical unit being the distance from the earth to our sun.The graph presented in Figure 4 links the masses of various celestial bodies with their corresponding event horizons.  Notice that both the horizontal and the vertical axes range over 20 orders of magnitude!  In 1942 the Indian-born American astrophysicist, Subrahmanyan Chandrasekhar, demonstrated from theoretical considerations that the smallest black hole that can result from the collapse of a main-sequence star, must have a mass that is equal to approximately 3 suns with a corresponding event horizon of 5.5 miles.  The event horizon of a black hole is the maximum radius from which no light can escape. The graph presented in Figure 4 links the masses of various celestial bodies with their corresponding event horizons.  Notice that both the horizontal and the vertical axes range over 20 orders of magnitude!  In 1942 the Indian-born American astrophysicist, Subrahmanyan Chandrasekhar, demonstrated from theoretical considerations that the smallest black hole that can result from the collapse of a main-sequence star, must have a mass that is equal to approximately 3 suns with a corresponding event horizon of 5.5 miles.  The event horizon of a black hole is the maximum radius from which no light can escape.

See all the ATI open-enrollment course schedule

https://aticourses.com/schedule.html

See all the ATI courses on 1 page. What courses would you like to see scheduled as an open-enrollment or on-site course near your facility? ATI is planning its schedule of technical training courses and would like your recommendations of courses that will help your project and/or company. These courses can also be held on-site at your facility.

https://aticourses.com/catalog_of_all_ATI_courses.htm

   

DEORBITING SPACE DEBRIS FRAGMENTS USING ONLY EQUIPMENT LOCATED ON THE GROUND

The researchers at NORAD*, which is located under Cheyenne Mountain in Colorado Springs, Colorado, are currently tracking 20,000 objects in space as big as a softball or bigger.  Most of these orbiting objects are space debris fragments that can pose a collision hazard to other orbiting satellites such as the International Space Station. Tracking these […]
The researchers at NORAD*, which is located under Cheyenne Mountain in Colorado Springs, Colorado, are currently tracking 20,000 objects in space as big as a softball or bigger.  Most of these orbiting objects are space debris fragments that can pose a collision hazard to other orbiting satellites such as the International Space Station. Tracking these fragments of debris is complicated and expensive.  Preventing collisions is expensive, too.  So, too, is designing and building space vehicles that can withstand high-speed impacts.  A cheaper alternative may be to sweep some of the debris out of space to minimize its hazard to other orbit-crossing satellites. When two orbiting objects collide with one another, the energy exchange can be large and destructive.  Two one-pound fragments impacting each other in a solid collision in low-altitude orbits intersecting at a 15-degree incidence angle can create the energy caused by exploding two pounds of TNT!! One scientific study showed that returning substantial numbers of debris fragments to Earth with a hydrogen-fueled spaceborne tug would cost approximately $3 billion for each percent reduction in the fragment population – which has been increasing by about 12 percent per year, on average. Fortunately, a powerful, but relatively inexpensive laser on the ground pointing vertically upward can be used to deorbit fragments of space debris traveling around the earth in low-altitude orbits.  The radial velocity increment provided by such a ground-based laser causes the object to reenter the earth’s atmosphere as shown in  the sketch in the upper left-hand corner of Figure 1. The total required velocity increment can be added in much smaller increments a little at a time over days or weeks.  Drag with the atmosphere was neglected in the case considered in Figure 1, but, in the real world, atmospheric drag would help the object return to Earth. Radiation pressure created by the assumed 50,000 watt laser beam is equivalent to 40 suns spread over the one square foot cross section of the object.  The total photon pressure equals 1/13th of a pound per square foot. *  NORAD = North American Aerospace Defense (Command) Figure1The researchers at NORAD*, which is located under Cheyenne Mountain in Colorado Springs, Colorado, are currently tracking 20,000 objects in space as big as a softball or bigger.  Most of these orbiting objects are space debris fragments that can pose a collision hazard to other orbiting satellites such as the International Space Station. Tracking these fragments of debris is complicated and expensive.  Preventing collisions is expensive, too.  So, too, is designing and building space vehicles that can withstand high-speed impacts.  A cheaper alternative may be to sweep some of the debris out of space to minimize its hazard to other orbit-crossing satellites. When two orbiting objects collide with one another, the energy exchange can be large and destructive.  Two one-pound fragments impacting each other in a solid collision in low-altitude orbits intersecting at a 15-degree incidence angle can create the energy caused by exploding two pounds of TNT!! One scientific study showed that returning substantial numbers of debris fragments to Earth with a hydrogen-fueled spaceborne tug would cost approximately $3 billion for each percent reduction in the fragment population – which has been increasing by about 12 percent per year, on average. Fortunately, a powerful, but relatively inexpensive laser on the ground pointing vertically upward can be used to deorbit fragments of space debris traveling around the earth in low-altitude orbits.  The radial velocity increment provided by such a ground-based laser causes the object to reenter the earth’s atmosphere as shown in  the sketch in the upper left-hand corner of Figure 1. The total required velocity increment can be added in much smaller increments a little at a time over days or weeks.  Drag with the atmosphere was neglected in the case considered in Figure 1, but, in the real world, atmospheric drag would help the object return to Earth. Radiation pressure created by the assumed 50,000 watt laser beam is equivalent to 40 suns spread over the one square foot cross section of the object.  The total photon pressure equals 1/13th of a pound per square foot. *  NORAD = North American Aerospace Defense (Command) Figure2 Figure 2:  These engineering calculations show that the 20,000 space debris fragments now circling the earth in low-altitude orbits could, on average, each be deorbited with ground-based lasers for approximately $40,000 worth of electrical power.  Those same ground-based lasers could be used in a different mode to reboost valuable or dangerous payloads in low-altitude orbits or to send those payloads bound for geosynchoronous orbits onto their transfer ellipses.  (SOURCE:  Short course “Fundamentals of Space Exploration”.  Instructor: Tom Logsdon. (Seal Beach, CA)

See all the ATI open-enrollment course schedule

https://aticourses.com/schedule.html

See all the ATI courses on 1 page. What courses would you like to see scheduled as an open-enrollment or on-site course near your facility? ATI is planning its schedule of technical training courses and would like your recommendations of courses that will help your project and/or company. These courses can also be held on-site at your facility.

https://aticourses.com/catalog_of_all_ATI_courses.htm